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ABSTRACT

The effects of mode coupling due to scattering effects in a traveling-

wave He-Ne ring laser are investigated, both theoretically and experimentally.

A Lamb type calculation is made in which the effects of scattering are
treated as source terms in Maxwell's Equations. This results in a scattering
correction to the self-consistant equations. The scattering correction to
the single mode amplitude equations result in mode competition between the :
oppositely directed beams and possible extinction of one of the beams. The
scattering correction to the frequency equations produces frequency synchron-
ization between the oppositely directed beams. Experimental verification of

both effects is given.
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INTRODUCTION AND SUMMARY

This report relates the results obtained during the one-year contract
NAS 12-27, "Experimental Research on Critical Problems Associated with the

Laser Integrating Gyro."

The objective of this contract is to establish the ultimate accuracies
associated with the use of the ring laser as an inertial component by per-
forming basic research on critical problem areas associated with development

of the Laser Gyro.

The particular areas of study and experiment are:

1) To perform a thorough analysis of the fundamental behavior of the
Laser.

2) To construct a mathematical model of a laser gyro showing all error
sources including non-linearities which may exist.

3) To perform design proof of the math model through testing for the
following:
a) lock-in
b) anisoptropic scattering as it effects nullshift
c) mode pulling
d) g2 sensitivity
e) variation of parameters

h) To calculate for the device errors on 1o, 20, and 30 basis.

A model of a traveling-wave ring 1aser1"2 was developed which included
mutual coupling between the oppositely directed beams due to scattering effects.
The model was a Lamb3 type calculation where an assumed electromagnetic field
in the cavity, polarizes the atoms and acts as a source of scattering. The
macroscopic polarization and the scattering are treated as source terms in
Maxwell's equations to calculate a reaction field. This reaction field
must equal the original assumed field in the cavity for self-consistency.

The self-consistency gives a set of equations to determine the amplitudes

and frequencies of the modes of oscillation.

For single mode operation there are four coupled self-consistent

equations to determine the frequencies and amplitudes of or oppositely
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directed traveling waves. For the case of the beams being frequency
synchronized, the self-consistent equations reduce to three coupled equations,
a pair of amplitude equations and one equation for the phase difference

between the oppositely directed beams.

The amplitude equations, under certain conditions, reduce to a pair
of coupled cubic equations. From symetry considerations, only four of the nine
solutions are independent. The solutions predict that for a single isotope,
mode competition occurs at the doppler center. The source of the mode com-
petition is the backscattering of energy from one of the beams into the direction
of the other. Depending on the strength of the backBcattering, extinction of
one of the beams may or may not occur. All four types of modern competition

solutions were experimentally observed.

Backscattering was varied by externally retroreflecting one of the beams
into the direction of the other. A polarizer was used to control the amount
of backscatter. While the beams were frequency locked the phase difference

between the oppositely directed beam was measured and correlation with the

model was found.

For the case of the beams being unlocked in frequency, the frequency equations

predict the lock-in phenomena . The source of lock-in is the mutual coupling by

backscattering, of the oppositely directed beams.

Anisotropic forward scattering was shown to produce a differential cavity
length for the oppositely directed beams and give rise to a frequency difference
in the absence of rotation (null shift). Null shifts were also shown to be

produced by velocity flow (Fresnel drag) effecgs.

Lock=in and null shift were experimentally investigated as a function

of tuning the frequency of oscillation across the doppler gain profile.

The stability of the laser when operated as an integrating gyro was
investigated by rotating the laser in both directions, at a rate much larger
than the lock-in threshold. After a period of five hours and after correcting
for earths rate;, the bias rotation rate was found as 3.6 deg/hr with a lo/hour
of 0.3 deg/hr.




With the completion of the contract, it is felt that the treatment of
a ring laser is on as firm a basis as the treatment of a linear laser. The
basic theoretical model has been confirmed experimentally. Due to a limitation
in time, however, all the details of the model have not yet been experimentally

confirmed.




2. MODIFICATION OF THE LAMB MODEL

In Lamb's mode13for a SWOM he considered a semiclassical model, in which

the electromagnetic field obeyed Maxwell's equations while the gaséous atoms

obeyed the laws of quantum mechanics. The treatment was a self-consistent

one, in which am assumed electromggnetic field (standing wave) in the cavity
polarized (non-linearly) the moving gaseous atoms. The microscopic polariza-

tion was then considered as a source term in Maxwell's equations. The derived

field was equal to.the original assumed field in the cavity. The self-consistency
gave conditions on the amplitude of the field and the fréquency of oscillation. The

latter equations gave conditions on threshold, output power as a function of
o 7 .

.

cavity tuning ("Lamb Dip")?'frequency pulling and pushing? combination tones'

and the related phenomena of frequency locking.

The nonlinear contributien to the polarization arose from a third order per-
turbation term in which the atomic system was considered to have interacted
three times with the radiation field. Each interaction involved a doppler phase
shift such that at the time of observation the net phase shift was zero. The
standing wave was considered to have been decomposed into two traveling

waves and the atomic system interacted with the traveling waves; twice with the
one going in one direction and once with the one going in the other direction.
Since the empty cavity normal modes were chosen to be standing waves, a

standing wave type radiation field was necessary to obtain the correct contribu-

tion to the third order polarization.

In the traveling wave ring optical maser (TWOM) where the waves running in

each direction are independent one cannot use Lamb's standing wave formulation.

What will be presented here is a modification of Lamb's formalism to allow
treatment of both the traveling and the standing wave optical maser. The

results agree with those oBtained by Lamb for the SWOM case.

As in the Lamb model, a self-consistent approach is used. An electromagnetic
field is assumed to exist in the cavity. The interaction of the radiation with

the ensemble of atoms having axial velocity components within an incremental




velocity around velocity VvV is considered. This ensemble sees a Lorentz trans-
formed radiation field in its stationary frame. Thus the interaction between
the cavity radiation field and the moving atoms is reduced to an interaction

between a doppler shifted radiation field and an ensemble of stationary atoms.
In the Lorentz transformation, amplitude transformations are neglected. Only

frequency transformations are considered.

In the frame of the moving atoms, the radiation field polarizes the atoms.
Applying the inverse Lorentz transformation the polarization is transformed
back to the cavity frame. The polarization in the cavity frame is then averaged
over all velocity ensembles. The macroscopic polarization is then used as a
source term in Maxwell's equations to calculate a reaction field. For self-
consistency the calculated reaction field must equal the original assumed
radiation field in the cavity. This self-consistency gives a condition on the

amplitudes and frequencies of the modes of the radiation field.

A further extension of the Lamb model is made by allowing for the coupling

of the oppositely directed travelins waves (ODTW) by the mechanism of

scattering. As in the Lamb model, to avoid a complicated boundary value problem,
the losses of the cavity are introduced by assuming that a ficticious optical
conductivity permeates the entire cavity. The effects of scattering are introduced
by assuming a further fictious conductivity caused by scattering. The scattering
conductivity term is used as a source term in Maxwell's equations and a scattering

correction to the self-consistant amplitude and frequency equations is obtained.
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3. ELECTROMAGNETIC FIELD EQUATIONS

In this section the equations to determine the amplitudes and the frequencies
of oscillation of the cavity modes, are derived. Starting from Maxwell's
Equations in a rotating frame the inhomogeneous wave equation for the electric
field is obtained. Since this is a selfconsistent treatment, the source term
is the macroscopic polarization which in turn is due to the electric field in
the cavity polarizing the gaseous atoms. In addition, the energy which is both
forward scattered and back scattered into the cavity, is considered as a

source term. This self consistent treatment is represented schematically in

Figure (1).

Figure 1. Block Diagram of Self Consistant Treatment

The diagram shows the scattered energy and the macroscopic polarization

as source terms for the determination of the electric field intensity. The
electric field intensity is the source of the scattered energy and polarizes the
atoms. The calculation of the polarization is a quantum mechanical calculation
which is done in a later section. In this section the macroscopic polarization
is assumed known. It should be noted that the scattered energy does not
directly affect the polarization. It indirectly affects the polarization in that
the frequencies and amplitudes of the field are affected by the scattered energy

and these in turn determine the polarization.
Spontaneous emission is not considered as a source term. Hence for the pur-
poses of the analysis, line width of the oscillating modes is considered

much smaller than any other frequency difference.

The calculation to leading to the self consistant equations, which determine




the amplitude, and frequencies of oscillation of the mode of oscillation,
will only be outlined here. Details of the calculation can be found in

Appendix A.

Maxwell's equations are written for a linearly polarized field and are ex-
pressed in a uniformly rotating frame. The equations are separated and the

one dimensional inhomogeneous wave equation for the electric field intensity

is obtained. The source terms for the wave equation are the microscopic
polarization and a term resulting from scattered energy. The wave equation is
solved by expanding the solution into the set of the empty cavity normal mode
eigenfunctions (ECNME). Substituting back into the wave equation, one then
obtains two sets of inhomogeneous equations for the time dependent coefficients
of the ECNME. The source terms are now the Fourier components, with respect

to the ECNME, of the polarization and the scattering field.

Thetime dependent coefficients of the ECNME are then written such as to
reduce, in an empty cavity, to independent sets of oppositely directed
traveling waves. A 'set of oppositely directed traveling waves, is schematically

represented in Fig (2)

Ey (wpt +9p) § e e e B (0 +9)

/ r e e LoD s
s,E, (wgt +9, + 62)-4 > siE; (wlt.+g@1 + ?1)
B, (wlt o, + 51) G- — R N (wgt +¢, +€,)

Figure 2. Scattering Source Terms

El’ E2 and Wy, w, are the amplitudes and frequencies of the oppositely directed
traveling waves. The scattered energy is assumed to be of two types; a
forward scattered part and a back scattered part. For forward scattering,

it is assumed that a fraction Sy7 8 of fields El’ E. is scattered into the

27’ 2
original direction, but with an additional phase 81, 62, respectively. For
back scattering, it is assumed that a fraction rys r2 of fields El,EEé is

scattered into the opposite direction with an additional phase ¢ €, respectively.

1’ 72
With this representation of the fields, the self-consistant equations for the

determination of the amplitudes and frequencies of oscillation of each mode are
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found to be
. o © o~ o oy
En * %, Ein = e (Cpp = 81 - 5 Toufoy cos (¥, +ey ) - e
(1)
slnEln cos 61 s
i : c
2n 2Qn 2n Heo . 1ln 1n n in 1n ni e,
9
1 Eln cos (y_ - eln) - 5;; s, E, cos 82n , (2)
. e . |
©@1n = O1n) B1n = e (Cpq +51) +55 Top, sin (b, +6p)
O (3)
* Ze_ ®1nf1n 510 Oyy
- é = W - 3
(QQn 2n) E2n €, [(Cln Sln) cos Wn (Sl +'Cl ) sin ¢ ]
o s (4)
S s
Ze_ “in"1n 10 (Wn B eln) + 2e, Sonfon S0 O ’
where
A (wen ) wln)t * (Q2n - @ln) (5)

18 a sloyly: varying function of ‘time. The:terms in w/Q
of the mode. The terms in S and C are the "in phase"
parts of the Fourier components of the polarization.

determined by a detailed knowledge of the interaction

represent the losses
and "in quadrature"
They can only be

of the atomic system

with the electromagnetic field. They will be evaluated in sections 6-9.

The terms in Ql, Q2 represent the empty cavity frequencies for fields E

8-11

E,, respectively. In a rotating frame 01 will be different from 02.
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4. SELF-CONSISTANT EQUATIONS PHYSICAL SIGNIFICANCE

A discussion of the physical significgnce of the source terms for the
inhomogeneous wave equation for the electric field intensity due to scattering
effects, is in order at this point. This discussion will be made in conjunction

with understanding the signfivance of the self-consistent equations.

For simplicity consider the self-constant equations for only a single mode.
Rotation removes the directional degeneracy on both frequency and ampli-
tude of the oppositely directed traveling waves and the self-consistent

equations can be written as

. o )
w _ . ___s __85
E, + 50" By - (Galn)1 e, r E, cos (¥ + 32) e, s,E; cos & (6)
. - g o4
E, +-§6— E2 = (Galn)2 - 55; r2E1 cos (¢ -uel)f- EE; s E, cosd, 7
L Os E2 . _GS
- = —3r _£Z g = i
(Ql 61) 5o I, - sin (e2 +§) + 5o S, sin 8, (8)
o 1 o
. % By Og
(02 - 6,) =5~ T, § sin (e1 - ) + 55— s, sin 5, (9)
o 2 o
with
b=0, -0, = (0, - o) t +ay(t) - o (t) (10)

In the self-consistent equations the explicit effects of the polarization of the
medium have been suppressed. Only the fact that the medium provides gain
has been includeéd in Equations ( 6, 7). Frequency pulling due to dispersive

effects of the medium have also been neglected in Equations (8, 9).

The gain dependence of the active medium and the dispersive effects of the
medium can only be ‘discussed in a quantitive fashion after a quantum mechanical
treatment of the interaction of the atomic system with the electromagnetic
field. Qualitatively, it is seen from Egs.. (8,9) that in the absence of

scattering effects, the system will oscillate at the cavity frequency ()
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(modified by a frequency pulling due to the dispersive properties of the active
material). For steady state oscillations and in the absence of scattering
effects, Eqs:. (6,7) give the oscillation condition that "gain equals loss

at the frequency of oscillation".

As will be shown in a later section, the gain term in Egs. (6, 7) is of the

form (neglecting mode competition)

AE - BES (11)

The term in "A" is the linear approximation (polarization proportional
to electric field intensity) result. The term in B arises from the saturating
effect of the electromagnetic field upon the population inversion of the active

medium which produces the gain. The strength of the steady state field can

be obtained from Egs:. (6, 11) as
BE® = A - w/2Q (12)
Hence the output is proportional to the difference between the unsaturated

gain and the loss.

The significance of the scattering term should now be somewhat clearer. In
the amplitude equations, the effects of the scattered energy is to increase
or decrease the gain, depending on the phase of the scattered energy. 1In

the frequency equations, the effect of the scattered energy is to introduce
additional frequency pulling effects. It should be noted that these effects
are not necessarily time independent, due to the presence of {§. It should

also be noted, that in addition to coupling effects produced by the induced

polarization of the active medium (gain and dispersion) which have not yet

been explicitly written, backscattering produces a coupling between the oppositely

directed beams, while forward scattering does not.

Consider the special case where the only scattering is forward scattering

into beam "one'".

Then r =1, =s, =0, 8 # 0, and Egs. (6-9) become, for steady state

é
s
17 e, s, E) cos &, (13)
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beam "one" will be shifted in phase, per pass, by the angle . Due ta this
additional phase shift per pass, the frequancy of the radiation generated by
the system will be reduced, such that the net phase shift per pass is still

equal to 2my. The reduction in frequency can be obtained from
@ = L% /pass = 0w, (t/pass) (17)

where the time for the radiation to make one pass is (L/C). From Figure

3, for $1 < 1,

al = s1 sin 61 (18)

= C ;
A, = -7 s, sin &, (19)

Equation (19) is the physical interpretation of the formally derived self-

consistent Equation (15). Comparing the two equations gives

c C
s —

-8 _ (20)
Qeo

Note that Figure 3 is also consistant with the self-consistent amplitude

equation, given by Equation (13). In Equation (13) the "gain" term is of the
form

AE. - BE 3

L - BES, A, B>0, (21)

as will be shown from the quantum mechanical calculations. This shows that

the output intensity in the presence of forward scattering is of the form

2 W C
= A - e e e 2
BE, A = T S, €08 &) (22)
Thus when the forward scattered radiation is in phase with the cavity oscillation,

the energy generated by the atoms is reduced. This is consistent with Figure 3.
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E%_ E, = (Gain)2 (1h)
Cg

Q1 Bt Se s1 sin 61 (15)

Q, - w, =0 (16)

In this special case there is no coupling and Figs (1L, 16) give the oscillation

conditions for beam "two"; gain-equals loss at frequency of oscillation and
in the absence of dispersive effects due to the medium, the frequency of
oscillation occurs at the cavity frequency. 'Eqs. (13, 15) show the effects
of scattering on the amplitude and frequency of beam "one".

Refer to Figure 3.

171

Figure 3. Phase Space Vector Diagram of Oscillation Condition

In the absence of scattering the intensity of beam "one" is represented, on
a frame in phase space rotating with the frequency of oscillation of beam

. The effect of the

"one" equal to the cavity frequency Ql, by the factor E

1

forward scattering is the addition per pass of a vector of length le1 with
an additional phase angle 61. From Figure 3, the resultant radiation of
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Fig. 4 shows the phase space vector diagram for the case of pure back
scattering. For the case of the frequencies of the oppositely directed
waves being different, § is a function of time and the vector E2 rotates
about vector E1 at the beat frequency rate. Likewise the back scattered
vector raE2 rotates about the vector E1 at the beat frequency rate. The

net traveling wave field in the cavity at any instant of time is the vector
sum of the field produced by stimulated emission and the field arising from
back scattering. If forward scattered energy is also present, the resultant
field is a simple superposition of all the fields present. For example Eqs.

(6, 11) can be written in the form

2 o .. g r

= L p o8 B eds’B. o AT
BE, AE, 2QE1 e, s1E,.cos 5, 26.0}-2122 cos (¥ +s2) (23)

The first two terms on the right hand side of Eqs (23) represent the difference
between the unsaturacted gain and the losses of the system. If the scattered

fields are in phase with the stimulated field

5=y + €, = 0,
then the amount of energy that must be produced by stimulated emission to
made up the losses of the system, is reduced. This is seen in Eq. (23),
where BE12 represents the stimulated emission term. Hence scattéred radiation
in phase with stimulated radiation results in an effective increase in the
losses of the system in the sense that increases losses result in decreased

stimulated emission.




-14-

Figure 4. Phase Space Vector Diagram for Mutual Coupling

Due to Backscattering
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5. FREQUENCY SYNCHRONIZATION (LOCK-IN)

The effect of backscattering has been shown to result in a time dependent
pulling of the frequencies of oscillation of the oppositely directe traveling
waves. An expression for the frequency difference between the oppositely
directed traveling waves can be obtained by subtracting Eqs. (8, 9) and
making use of Eq. (10) to write

.

v =0, - Q, + (¢/L) [s, sin 5, - s, sin &,] +

(c¢/L) [92 sin (V¥ + 62) +p, sin (¢ - el)], (24)

where

Pp = TEYE; 5 Py = 1K /E, (25)

The first term on the right hand side of Eq. (24) is the difference between
the cavity frequencies of the oppositely directed traveling waves. This

term is proportional to the angular velocity of the rotating frame, upon
which the cavity is located, and includes the mode pulling terms ariging from

the dispersion of the active medium.

The second term is a frequency bias resulting from differential. fdrward
scattering. It produces a beat frequency between the oppositély directed
traveling waves in the absence of any rotations of the cavity frame,

This term_arisgés due to forward scattering produé¢ing ‘a change '’ o chango
in the optical length of the cavity for both of the traveling waves. If
the length change is different for each of the beams, a frequency difference

results.

The third term is a time dependent frequency bias resulting from mutual
coupling between the traveling waves due to backscattering. Eq. (2L4) can
be put in the form

V=0 +20 bias T 25 cos ({-B), (26)

lock "
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a9} +02 -Ql,

Xdbias = (c/L) [s1 sin 8, - &, sin 62],

2, 1/2
L= 2
Anlock‘ (¢/L) [pl + P, + 2p1 p, cos (e1 + 62)] (26)
(ry 12/r1I1) cos €, +cos €,
tan B = - - (27)
(r2 Igfilll) sin ¢, - sin e,

In Eq. (27), I1 and 12 are the intensities of the traveling waves, as

measured in the cavity.

Equation (25) is the lock-in equation and is analyzed in Appéndix B. It
has the property that for

(&0 + Aubias) #2 Bhoek

the beat frequency is given by

q;=(m+m )

bias
for

() + 0 ) ¢ X2

bias lock ’

the beat frequency becomesca constant, independent of time. For this case
the frequencies are said to be locked together. At all points above the
lock in region the actual beat frequency is less than the beat frequency
in the absence of backscattering and is given by

)2 2 ]1/2

v o=[(0 +20 - M7k

bias (8)

Figure )5 shows a plot of the beat frequency in the absence of backscatter

and the reduced beat frequency due to backscatter and lock in
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6. QUANTUM MECHANICAL DERIVATION OF POLARIZATION

The second part of the self-consistant treatment is now carried out. The
electric field intensity is now assumed known and from it the polarization
of the medium is calculated. Knowledge of the polarization allows the cal-
culation of the lineshape of the atomic maser transition and hence such

quantities as intensities of the oppositely directed beams and frequency

pulling effects.

The self-consistant method will be carried out in two steps.. As indicated
in Fig 1 the effects of scattering indirectly affect the polarization in
the sense that the scattering determines the electromagnetic field in the
cavity. 1In the first step only the two oppositely directed traveling waves.
as given in Eq(Al0) will be used to determine the polarization of the atoms.
Then the effects of scattering will be considered to calculate a correction

to the polarization.

Consider an ideal two excited level system. Atoms are excited toveither of
levels a or b (Energy ﬂwa.>'ﬁwb) at some time t,- The atom can decay
spontaneously at rate Y40 7y respectively, or due to the presence of the
rediation field, undergo a stimulated transition. For oscillation to occur,
it is assumed that a population inversion exists. Expanding the state of the
atomic system in terms of the unperturbed set of states of the atom, here

taken as only levels a and b, the equation of motion for the expansion

coefficients is3:’I2)
p=-ilH pl-L (Tp+on), (29)
where
aax ab* pce. p
o = - [TaE b, (30)
ba* bb* pba pbb
(t) 0
wa Vab 7a
H W o | I = (31)
vba( ) Wy 0 b
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The matrix element between states 3 and b of the interaction is given as
MVap(E) = - 1, E(z,v,t) (32)

where Hap is the matrix element of the electric dipole moment taken

between states a and b and Egzzvzt is the electric field as seen by the

atom. It is this p01nt in which the formalism differesfrom that as

presented by Lamb.”~ Since the atom is described in fts own Lorentz

frame, the atom always remains at the point where it was excited.
Collisions are neglected. Thus P is characterized by the following
parameters: to and z, defined in the moving frame; v, the axial velocity

components of the atom with respect to the cavity; o = a, b, the state to which

the atom was initially excited at time t s t, the time at which we wish to ob-

serve the system. Since the atoms are of thermal velocity, simple Galilean

transformations are used so that atom time is simultaneous with cavity time
and atoms in all frames see the same cavity length. The p which described

the total ensemble of atoms excited to either state at position a, having velocity

component v is written as

t
p(a,v,t) = Z fdzo[ dto ?(Q/ (tb,z,v) p(a:to)zJV)t) S(Z'ZO) (33)
a=a,b _®

where A (t »Z,V) is the rate Per unit volume of exciting atoms having
ve10c1ty component v, to state o at position z, at time t . Equation (33)
contains a trivial integration containing a delta functlon over all the initial

excitation points for the velocity ensemble. This occurs because the inter-

action is treated in the stationary atom frame.

The cavity field as given by Equatlons (A10-A12 , A21-A23) in Appendix I is seen by an

atom at time t and at position z in a moving frame as

- E(z,v,t) = z [Eln cos(wln(i +v/c)t -Hhcp.‘ln,\) "*E*an cps ( ‘”Eﬁﬂ/’v-'sf’; vie)lt +

‘?




'
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+<p2n)] Un(z) + [Eln sin ( Oy (1 +v/c)t +cp1n) -
- E, sin (w2n (1 - v/e)t + wen)‘]Vn(z) (3L)

The coordinate system has been chosen as to arbitrarily cause the velocity
ensemble to see the traveling wave Eln and E2n as being doppler shifted up
and down, respectively. The Kn in the ECNME are still given by Equation

(A13) as 27n/L.
The contribution to the polarization by the moving atoms at position z is
P (z,v,t) = ubap(z,v,t) +c.c ... (35)

The Fourier components of the polarization due to all the atoms in the

velocity ensemble located at point z is

. L

P, (v,t) =(2/1) [ P (2,v,1) U_(2) da (36)
(o}
L

E (v0) = (/1) [ P(ev,0) v (2) da (37)

The macroscopic Fourier components of the polarization are obtained by
transforming P (v,t) and ?; (v,t) back to the cavity frame and averaging

over--all velocities. In performing the transformation it is first necessary

to group P (z,v,t) into terms having the form of oppositely directed traveling

waves. The terms will be of the form exp i[_i Kz - o, (1= v/c)t - ¢ln]'
Thus to make the inverse Lorentz transformation, it is sufficient to
multiply each term by exp(l i W15 t v/c)respectively. This will be more

clearly shown in what follows.
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T. CALCULATION OF POLARIZATION FOR SINGLE MODE

The solution of Equation (29) for p(a,to,z,v,t) is obtained by treating the
interaction between the radiation field and the atomic system as a pertur-

bation and expanding p(a,to,z,v,t) in orders of the interaction. This hag

been done by Lamb:3and will not be repeated here.
For a single mode the interaction is obtained from Equations (32, 34) as
V.. (t) =- EEB E.cos [(w +Kv)t + + E cos[(w - Kv)t +
ab w1 1 1 2 2

2

+-¢2]] U (z) + E, sin [ml +Kv)t +-¢1] - E, sin [we

7

+9, J}vn<z) (38)

In Equation (38) the distinction between the ECNME and oscillating wave
number has been neglected. The mode subscript on the amplitudes has also
been dropped. Calculating the first-order polarization by evaluating the
integrals in somewhat the same manner as prescribed by Lamb3 (details

are to be found in Appendix III), the conditions on the amplitudes and fre-

quencies of oscillation of the oppositely directed traveling waves are found
as

B, +5 (w/Qy) E; =2 (u/e,) /7 A B, exp - €. ° (39)
w, =Q; - (w/eo) AF (gi), i=1,2 (L40)
where
gi
F(5;) = (-6, | ax exp x® (41)
o
A= |u|?F(t) / (hku) (42)
&, = (o, - w) / (K u) (43)

- Kv)t +
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Scattering effects have not been included here. In writing Equations (39,

L0) it has been assumed that the doppler width

Aw ='2(1n) 1/2 Ku |,

is much larger than the natural width. In Equation (42), N(t) is the

average excitation inversion density.

Equations (39,40) are the standard threshold conditions for independent

oscillation. For the case of a SWOM, Equations (39, 40) reduce to those

obtained by Lamb"?




-22-

8. POPULATION INVERSION

A second order perturbation expansion gives the average population inver-

sion of a given velocity ensemble as (details are in Appendix IV).
op(vyt) =N () W(v) |1 - 2111(5;1 + v/u) - 2123:@2 - V/u)] (k)
where W(v) is the normalized velocity distribution.
The dimensionless intensity of each beam is
_ 2 2 2
I = |map| " B/ (2% 7)) (45)
The Lorentzian functioni(g) is defined as
-1

L& <[1+em?] (46)

where 1 is the ratio of the natural to doppler width, or

=y _]_ ]
N ab /Ku = 5 o / (K u)

~~
I~
~

Equation (44 ) shows the saturating effects of the oscillations on the
unsaturated population inversion. A plot of average population inversion
versus velocity ensemble shows the Gaussian velocity distribution with
two Lorentzian holes "burnt" into the curve. This can better be seen by

writing Equation (44) in the non-normalized form

[ad -l -
_ | e B
Ap(v,e)=- N(t) W(v){ 1 - 21, |1+ 1/2) /xw
‘L n
(48)
. v2 -1

w-wl-m+KV
- 2I 1 + =
o (1/2)ﬁ»n
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In Equation (48) pulling effects have been neglected and for a first
approximation X} = Wy = W Thus the depth of each hole is determined by
the intensity traveling in each direction and the width is equal to the

natural width of the atomic transition. For the case when

0< M<< w - 0,
the holes are located on opposite sides of the inversion curve. As the
oscillations are tuned through the center of the atomic transition such
that A2 = w - w, onme of the holes is found to be symmetrically placed

on the inversion curve. As this point is passed it is found that both
holes are centered on the same side of the inversion curve. It is in this
region that strong mode competition effects are expected, although mode
competition effects are present at any point of oscillation. Mode compe-
tition is a maximum when the two holes completely overlap, which occurs
when /1 = 2(w - wl). At this point the two oscillation frequencies w

1
and w, are symmetrically located about the atomic transition frequency w.

At first sight it is not even obvious that two independent oppositely directed
traveling waves can exist at any frequency. This question will be considered
after the calculation of the third-order Fourier component of polarization,
which will allow calculation of the intensities I1 and }5.

It should also be noted that Equation (L48) gives the validity condition on the
strength of the field such that convergence of the perturbation expansion
occurs. Physically it says that the relative depth of the hole burnt into the
I

inversion curve is small, or I <<1.

1’ 2

It should also be noted that Equation (48) is what whuld be calculated using
Lamb's formalism3forthe case of a SWOM if A) = O and

1

(I} = T3) ‘Twom = T Lswou
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9. THIRD-ORDER POLARIZATION

The expression for, and the details of the calculation of the third-order
Fourier components of the polarization are found in Appendix . The
expression is similar to that as derived by Lambg, except for the Lorentzian
operator necessary to transform the polarization contribution of a single

velocity ensemble from the moving atom frame to the cavity frame.

In the "doppler limit" the self-consistent equations can be approximated as

E, +% (0/Q,) Eq =—é— (w/e,) [T A E [zi (gl)/zi(o) -

(49)
- I, exp (—512) - I, exp (-522) i(g)]
B, +3 (0/Q) E, = % (u/s)) /7 AE, [zi (8,)/24(0) -
(50)
- I, exp (-§22) - I1 exp (-512)31(5)]
. |
0y +9, -0 = Hu/e) alz, 6 +1, @M@ 2, €| G

L e

(wy +, - 0) = Hefe ) A [zr G+, EIE 7 )] (62

where Zr and Zi are the real and imaginary parts of the "plasma dispersion

function", as defined in Appendix C.

For the case of a SWOM, Equations (49-52) reduce to those derived by Lamb,
except for the added exponential factor exp (-§12) next to each dimensionless
intensity factor Ii' As shown in Appendix E,, the exponential factor arises
from the evaluation of the integrals without the delta function approximation.
The physical significance in being able to insert or omit the exponential
factor arises in the criteria for the validity of the perturbation expansion.
The exponential factor becomes significant for large §i, or for operation
"away" from the center frequency of the atomic transition. This implies a

gain/loss value such that as the oscillation frequency is tuned through the
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doppler center, the depth of the holiuwill be great enough such as to invalidate
the perturbation expansion. Hence, the solution is expected to be most valid
in the region where the exponential differs little from unity. However, when
the effect of multipleisotopes upon the operation of the system is considered

it will be essential to keep the exponential factor.

From a study of the form of the interaction which leads to Equation (49-52)

it is seen that the dominant contribution to the polarization occurs when

the accumulated doppler phase shift cancels. This corresponds to the case

of pure inhomogeneous broadening and the third order contribution to Equations
(49-52) contain only this dominant part of the interaction. The:third order
polarization occurs due to the atom undergoing three stimulated interactions
with the net radiation field at times t"'< t"< t'. The choice of with which
traveling wave the atom interacts, is not arbitrary. From the form of Equations
(E6) it is seen that for the dominant contribution to the polarization, the
atoms first two interactions are with the same traveling wave, while the third
interaction may be with either of the two traveling waves. This order of

interaction also applies for the case of SWOM.

For the case of broadening somewhat between pure inhomogeneous and pure
homogeneous, contributions to the polarization can occur when the accumulated
doppler phase shifts are not zero. Some of these contributions have been
evaluated in Appendix E, although they have not been included in the self-
consistent Equations (49-52), and have been shown to be of higher order

in the parameter (natural width/doppler width).
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10. SELF-CONSISTANT EQUATIONS
TWO ISOTOPE CASE

Consider the addition of a second isotope to the system such that the ratio of
atoms of each type is f/(1 - £). Let primes signify quantities pertaining to
the second isotope. Refer to Figure 6 for a diagramitic definition of the

variables. Then the excitation inversion density for each velocity ensemble is
N(z,v,t) = £ N (z,t) W (v) + (1 - £) N(z,t) W ° (v) (53)

In analogous fashion to the single isotope case, the self-consistency amplitude

equations, correct to the third order, are found to be

él +% (0/Q,) Eq % (w/e)) VT & E) f[exp (-512) - I, exp (-512) -

-

I, exp (-gf)i(g)] +(m/m 2 (1 g [ exp (-€,9) -

I exp (-§1%) - 1, exp (50 & <§--)} (54)

r

1 o
+ 5 (w/eo) yr A Ey f!exp (-§2 ) - I, exp (_§2 ) -

M) ==
”~~

®/Qp) Ep

I, exp (-gf)i(g)] e /mY? (1o e (-2 -

!

I, exp (-€0) - 1, exp (-gf)i(g')J (55)

The ratio of the masses of the two isotopes arises from the difference in
doppler widths for each isotope. Comparing Equations (54,55) to the amplitude
equations for the single isotope, it is seen that the equation could easily
be generalized for any number of isotopes. Likewise, the frequency equations

can be written by inspection of the equations for the gsingle isotope case as

(R -, .. v T . I M * et ! - ~
Y £ ' N

(o, +°;’1 -y =% (w/E_) A f[zr(gl) + 1, (§/n)5.(§) 2y (52)} * (56)

cmY2 -z @) v, emE e z <§'2>}
L



-27-

(w, +<;>2 - Q) =% (w/E)) Al £ [Zr (8) +1, (e/m3 ) z, (%1)] +
(57)
+ (mr/m Y2 (1 ,,f)[zr (63 +1, 5'/mE(E" zio;i)}

The average population inversion as a function of velocity ensemble is obtained

to second order as

sp(v,t) = £ N(t) w(v) [1 - 2111(51 + v/u) - 2125‘(52 - v/u)} +
(58)

+(1 - £) N(t) W (v) [1 - 211‘£(§i +v/u) - EIEf(gé - v/u)]

For the single isotope, the population inversion curve versus velocity ensemble
and the gain curve versus frequency are quite similar in shape (the hole width

in the gain curve is twice, in comparable units, the hole width in the population
inversion curve) and it is easy to confuse the meaning of each. For the two
isotope case, the curves are radically different. From Equation (58) the
population inversion curve is composed of two velocity distribution functions,
each located symmetrically about the v = 0 axis. The two holes burnt into

each curve are of different depth and are located at different distances from

the v = 0 axis. There is no significance to the superpesition of the two curves.

The gain curve is obtained from the right-hand sides of Equations (54,55),
although strictly speaking the amplitude equations only give the condition

that gain equals loss, at the frequency of oscillation. It is the interpretation
of the equations that determines gain at a frequency other than the frequency

of oscillation. In addition, for a TWOM located on a rotating frame, the gain
profile versus frequency in the presence of oscillations at a fixed frequency

is different for radiation traveling in different directions. As an illustration,
consider the gain profile from the point of view of radiation traveling in the
same direction as the radiation oscillating at wy, < w. See Figure 6a. Then

at W, there will be two holes, one in each of the single isotope Gaussian gain

profiles. The holes due to the radiation oscillating at w, will burn image

holes at -§1 and -§i, respectively. From the Lorentzian finctions in
Equations (54,55), it is seen that the width of the holes burnt into the

gain curve is twice the width of the holes burnt into the population inversion
curve. In the plot of gain versus frequency of oscillation the superposition

of the gain profiles of the individual isotopes gives the resultant gain curve.
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6 - (A) The gain >rofile for a test signal traveling in
the same direction as the radiation oscillating at
Wy for two isotopes having relative concentrations
of f and f'. The resultant gain curve is a
superposition of the single isotope gain curves.
(B) The Gain Profile for a test signal traveling in
the same direction as the radiation oscillating at Wy
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Thus in Figure 6a,tthere will be three holes burnt into the resultant gain
curve. At the fregu%ncy of oscillation, the gain equals loss condition will

be satisfied by the hole being burnt into the resultant gain curve down to the
loss line. As the frequency of oscillation is tuned across the atomic transi-
tion, the depths of the holes burnt into the single isotope gain profiles will
vary as determined by Equations (54,55) such as to always maintain the

gain equals loss condition at the frequency of oscillation in the resultant gain
profile. If the gain profile is considered from the point of view of radiation
traveling in the opposite direction (same direction as radiation oscillating

at wl) then the hole burnt into the resultant gain curve will satisfy the gain
equals loss condition at frequency - See Figure 6b. The image holes

will now correspond to the radiation oscillating at frequency Wy
It is interesting to note that the above interpretation of the gain profile as

a function of frequency and both the amplitude equations and frequency

equations can be obtained using Bennets th "hole burning" mddel. The width

of the holes are taken as twice the natural width and the partial depth

only due to the radiation which causes the burning of each hole, is given as

the dimensionless intensity multiplied by the gain at the point where the

hole is burnt. The total hole burnt into each single isotope curve includes

the contribution due to the Lorentzian tail of the image hole. It should be
noted that, as shown by Appendix E and the discussion in Section 9, Bennets

"hole burning" model is valid only in the "doppler limit". When the natural
width is comparable with the doppler width, as in the 3.39 micron neon transition,
the broadening is neither pure homogeneous nor pure inhomogeneous and to obtain
the saturated gain profile it is necessary to carry out the analysis as done

in Appendix E.
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11. SELF-CONSISTANT EQUATIONS WITH BACKSCATTERING

The self-consistant equations have been found in section 10 to be of the form

(taking the single isotope case for the "doppler limit").

él +-7§%— E, = E%—; JT A Ey [exp (-§12) - I, exp (—§12) -1,
1 o
. (59)
exp (-€,0) i(g)J
le + —E%’-e- E, = %o JT AE, [exp (-§22) - I, exp (-!:;22) -1,
, (60)
exp (-8,2) i(g)]
m1+c.p1-01=2—(2—‘A[ §)+(%)1 2, (5, i(g] (61)
‘ o
W + 95 - 0y = 5(2—0‘4 [ Ay (52) * (%] Ty 3 (gl)i(g)J (62)

Referring to Section i for the effects of backscatter, it is seen that the
effects of forward scattering do not change the form of the above self=: -
consistant equdtions and heed not: he;written explicitly. h&he forward scattering
amplitude term can:’be Jlumped!with::the losg term while the:fdrward.scattering

frequency term can-be lumped with the passive cavity frequency term.

Before including the backscattering term, it is preferable to express the
constants in the self-consistant equations in terms of easily measurable

quantities. The Q of the cavity is defined as

_erL (63)

where A is the transition wavelength, 1, the length of the cavity and y the

fractional loss per path.::Then

w_ o _ S
2Q 2L (64)

At threshold where the field in the cavity is zero and at line center where

€ =0, - Eq. (59) gives (E =0 and since. A is proportional to population inversion),



-31-

w .- W -
20 "z T A

(65)

But since AE . is. the population inversion where the fraction gain/pass G is equal

to the fractional loss/pass 7, then

A _G
=5
At Y
and
A G
W _ W Tt
ze, Jr A .-—-Eeoﬁr -

But from Eqs (64,65), Eq. (67) becomes

G

=l°

W =
Z:JTTA—

Now the self-constant equations in the presence of scattering become

~ E

2L 1 _ )

T E_1'°‘1'5111'91212'
E

oL B2

< '13'5""2'5212'92111‘

e A = _
w +-91 Ql o, + 712 I2

o
no
'—I
—
(ol

where

R
—

]
(]
]
»

o
~~

]
um

'—I
no
~

]

X
—
no
w
o

w
]
(3]
0]
L]

o
~~
1
ua
s
no
~

e

épé cos (¢ + 62)

2b1 cos (¥ -el)

iy sin (¥ +¢,)

c .
R, sin (el~- V)

cos 81

(66)

(67)

(68)

(69)

(70)
(71)

(72)

(73)

(T4)

(75)

(76)



-

. .8
- e ;
Ql Ql T 8p sin 61

o < SLG 2. (gl)/ﬂi

T2 = ZL—G (%)zi (gl)i(g)/ﬂ%

gl = (0)1 - w)/Ku

Ku = Awdop/2(ln2) 1/2
1

§=5 (§1 +§2)

n = 7ab/Ku =[Aw (natural) + Aw (collision) ] /2Ku

2, 8 =JTexp (-8 -2[1-2F ()] +0(n) nea

2. (8) =-2F (§) +2[Tn exp (€7 +0(r%)

3
F(E) =exp (-€9) | exp (x°) dx“=‘§[1-§§2+

o L

¥ 0(5“)] £ <1

The definitions of oy 52 etc. are analogous.

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)
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12.  BACKSCATTER CORECTION TO POLARIZATION

Figure (1) shows a block diagram of the self-conistant treatment. There it

is seen that an assumed elechromagnetic»field in the cavity produces the
scattering source terms and polarizes the atoms. The microscopic polarization
and the scattering terms are then treated as source terms in Maxwell's
equations to calculate an electromagnetic field. This calculated field must

equal the original assumed field for self--conisitancy.

In calculating the polarization in section 6 only two oppositely directed
traveling waves were taken as the assumed field. Now a correction to the

polarization will be calculated by assuming that steady state backscattering

fields also exist in the cavity. The form of the backscattered fields are similar

t0.-those used for the source terms in Maxwell's equations. They are represented
aé, q

in Fig (2). Using this correction field, a calculation of the first order

polarization is carried out in Appendix F.

The results show the first order self-consistant equations (59-62) to be
modified to read

E, "5 B gj—[ (B 4, By [ 3, (8,) cos (4 + ) -
(87)
"Zr (§2) sin (‘l’ + ee)]]
ﬁg +2—g—£ E, = ‘é—’-‘:—o[ Ey 8, (8y) +r) El[:'éi (§,) cos (y - ) +
*t (8,) sin (¥ - el)]] (88)
(u,1 .H'Pl - Ql) E, _‘é": [E-z (g ) +1, E [zr (§2) cos (V¥ +e}2) 4
’ (89)
+3, (8,) sin (¥ + 62)]J
(wpt oy - 0, ) E, =gg[2r< D) +xy B 8, (5)) cos (v - ¢))
(90)

2, (8) sin (¥ - ¢))] ]
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The modified self-consistant equations (87—94) show additional terms linear

in the backscattering coefficients Tty These terms are multiplied by

factors of cos § and sin § and are of the form of mode coupling terms in the

amplitude equations and frequency pulling terms which lead to lock-in in
the frequency equations. When the backscattering effects obtained by
considering scattering as a source term in Maxwell's equations are also
considered. the self-congistant equations become [combining Eqs. (87-90)

with Eqs. (69-72)] equivalent to Eqs. (69-72) with the following changes:

2
R G G 2 2 1/2
P~ [ 17 B (8) += 13" (8) +3.° (5,)]] (91)
G
.1 3 35
€, — €, - tan — (92)
2 2 -G
There are analogous equations for the €hange in P1 and € -
For small values of gain ie G~ .1, Eqs (91,92) can be approximated as
'-2
G- -8y
2
- G 5
€, v ey, -5 e (9k)
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13. GAIN DEPENDENCE OF LOCK-IN

From Eq. (26) the expression for the lock-in frequency is given by -

¢ 2 2 1/2
mlock =1 { Pyt 4 2p1 p, cos (<-:1 ?+.<-:2)]

Making the gain correction, as given by Egs. (93,94), Eq. 26 becomes

2 2
_c 2, 2 o _~ -§7\q1/2 _ G -§
lock =T [P1 +Pp +2)p; cos (6) +ey - 6,77 )77 (1 - 27 )

Thus the gain depéndent part 6f the lock-in- threshold should be an even

function of tuning the‘frequenqy*bf'dscillation'éérbss'tﬁe dbpblér”géin-

curve, with a m@dtmum at the doppler center.

Equation (95) holdsin the limit of small gain.

(26)

(95)
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14. ANALYSIS OF MODE COMPETITION EQUATIONS

The Eqs. (69,70), determining the intensities of the oppostiely directed

traveling waves are two simultaneous non-linear coupled first order differential

equations in thettwo unknowns Il’ 12. The intensity I is related to the

electric field intensity E by

I = (const) o

Defining a normalized electric field intensity so that

I=¢E (96)

the mode competition equations for steady state oscillation can be written

in the form

3 2 _
By - ByE)T - 85 EJE)T - RSE, =0, (97)

_ 3 2 =
B, = BoE,T - 6, EE;” -RE, =0 , (98)

where the coefficients are, for a single isotope and no assymetry

o) = (6/7,) exp (-§,°) - 1 (99)
B, = (6/7,) exp (-£,°) (100)
0,, = (6/r) exp (-6,%) §(€") (101)
R, = (2r2/71) cos (Vv + e2) (102)

Similar equations exist for the other coefficients.

In analyizing Eqs. (97, 98), R will be assumed to be consistant (independent
of 6). The justification for this assumption will be discussed after a
discussion of the experimental results. Eq. (97, 98) are a pair of coupled

cubic equations. Thus nine sets of solutions for El’ E, exist. One is the

2

null solution and since the equations are odd in E, for each set of solutions

(El’ E2), (-El, 'Eg) is also a solution. Thus only four sets of solutions
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need be found.
The technique to be used is to write
E, =xE;, (103)

substitute Eqs. (103) into both equations (97,98) and solve each for+E.. to

obtain

2’

5 alx - R2 02 - R1 X

E° = S - = i (10k)
2 3 2
B x 48 x By + 0,

Equation (104) gives a quartic equation for the unknown quantity x, which can

be written as

(105)

L - 3 2
RByx + (6 - P yET +(RyB, - Ry, )X+ (B - 0 ,0)x

21%1
A - PRy =0

As the frequency of oscillation is tuned the parameterswill vary, as given by
Eqs. (99 - 102). Thus the mode competition equations should be numerically
solved by solving the quartic equation (105), for each value of frequency,

on a high speed computor. This was done on the Honeywell 1800 and typical
results for intensities I

I, (when R, = 2R2), are shown in Figs (7, 8).

1’ 1

It should be emphasized that the only collision effect that has been considered
1

here has been a widening of the hole width. 5Pressure effects in general

will be considered after a discussion of the experimental data.

Figs. (7, 8) show the intensities I I,, respectively. In both figures,

P
curve'"a" shows the intensity in thi absence of back scattering effects. The/
power tuning curves show the characteristic Lamb dip around the (doppler)
center frequency. Curves b-e:ccorrespond to the four possible solutions. It
should be noted that the intensities are complementary for the oppositeiy

directed traveling waves. Solution "b" corresponds to the case when L, is

- extinguished over most of the doppler curve. At the center the beam turns on

over a range of a few MHz. The complementary solution for I, shows a value

2

of I2 with no competition effects due to the presence of Il over most of the
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doppler curve. At the center a sharp downward spike occurs, due to the presence

of beam Il-

Curves "c" and "d" show the existance of solutions for I1 and I, which differ
only slightly from the non-backscatter solution over most of the doppler curve.
At the doppler center, curve "c¢" shows a competition dip which occurs in the
opposite direction to that found in solution "a". At the doppler center no

solution exists corresponding to curve "d". The roots of the quartic equation

are complex in this region.
Curve "e" corresponds to the solution for which beam I1 takes over completly and
beam 12 is essentially extinguished. This solution corresponds to the second

of the complex roots of the quartic equation. Thus it is possible for either

beam to be extinguished.

Whether or not the solutions are all stable is another question that must be
answered. A Poincoire analysis was carried out for the case shown in

figs (7, 8). The results showed that all the solutions are stable. It should

be emphasized at this point that the case being consi

-~

.
dered ig id

collision effects and differential losses hawe not been considered.

To set a better understanding of the solutions of the mode competition equations,
a qualitative description of the quartic equation will be made. For symplicity,
equal losses for both directions will be assumed and the beams will be assumed

to be frequency locked. Then Eq. (105) reduces to
L 3 2
Rix' - (1 -%) x +X®R -R) 5 + (1 -F) x - R, = 0 (106)

For the non-backscattering case, R1 = R2 = 0 and Eq. (106) gives x = 0, +1.

From Eq. (104), the solution corresponding to x = 0 is

- = g = - 1 - 2
I 0, I 5 1 o exp 3 (107)

This corresponds to solution "b" without the backscatter spike in figs (7,8)

The solution corresponding to X =+1lis



41~
L =T =01 =) exp 8% (1 + L9017 (108)

This corresponds to solution "a" in figs (7, 8). A value of G/y = 1.24,

g% = 500 MHz, n = .155 was chosen, where

2 (v-wy)
§ = Ku ’ (109)
L&) =11+ . (110)

To consider the effects of backscatter, let
R, =KR, , K<l (111)
Note that the results for the case of RE:-RI can be obtained from the R2<:R

case by interchanging the subscripts "one" and "two" and lettipg K - 1/K.
In Figs ( 7, 8 ), K = 0.5.

1

Using Eq. (111), Eq. (106) becomes with R, "R

x“-%(l-i) S +30-02+2 0 -Lx-x=0 (112)

Consider the solution of Eq (112) at the doppler center. From Eqs (109,

110), the doppler center corresponds to £ = 0 and Jl= 1. Eq (111) becomes
xl*+(1-1<)x2-1<=o

or ((113)

X =+J/k, +1i

Thus at the doppler center two of the solutions are complex. This corresponds
to solutions "d" and "e". Solutions "b" and "c" are equal and the intensities

are related, as seen from Eq. (103), by

5 (114)

Note that Eq. (114) is only approximately satifified in figs (7, 8) since the
curves were not calculated for a single isotope. The isotopic impurity was
L

taken to be 107 ', but this impurity is sufficient to restore the odd terms in
x in Eq (112).
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Using DeMoivre's theorem to determine the sign of the roots of Eq. (112), it is
found that there are, at most, three positive roots and at most one negative
root. Euqation (114) shows that there exists a negative root and that the

root corresponds to either curve "b" or "c". Equation (114) also shows that

as the scattering becomes highly assymetric (K~0) the spike amplitude in

solution "b" drops to zero and the dip amplitude in solution "c¢" increases. 1In
both cases intensity I1 drops to zero. The solutions for 12 are again complemen-
tary. Thus the relative strengths of the competition spikes are independent

of the absolute scattering into each direction. Again it should be emphasized

that this relation holds only in the limit of a single isotope.

Again consider the case of assymetric scattering, or K = 0. Equation (112)

then becomes
x[x - 2 (1 -3)s° $x+20-D1-0 (115)

The x = O root corresponds to

-~
=

=0

and from Eq (107)

=12 2
1 c exp § .

-t

2

At the doppler center, the cubic equation (115) has two complex roots and
another root of x=0. This x=0 root corresponds to the minimum intensity I1
of curve "c" beingzzero. For frequencies slightly off the doppler center,
¥~ 0 and 1 -;ﬁ“+-%g'; 0. Thus an approximate root of Eq (115) corresponding

to this case is obtained as

e .o (-5
R %
or o “(116)
N (e a% g
7 R

Thus curve "c" corresponds to the negative root.
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15. COMPUTOR SOLUTIONS OF MODE COMPETITION EQUATIONS

Figures (7,8) show the four possible solutions for the intensities I, 1
respectively. The parameters used were those for the neon-20 transition
(99.99 percent isotopic purity). ihe doppler width was taken as 800MHz

(Ku = 500 MHz corresponding to a témperature of 413°K. The gain/loss

ratio was taken to be 1.24 for both beams. The pressure used was 3 torr

o
<

giving a value of 1 = 0.158. The backscatterimng parameters were chosen as
R, = 10'”, K =0.5.

In Figs (7,8) and in those that follow, the enly effect of collisions that
is considered is the broadeningu%f the hole. Assymetry due to phase shift
effects and the reduction in the hole depth due to velocity shift effecth

have not been considered. These effects will be considered in a later section.

Figure (10) shows the effect of varying the pressure and hence the hole width.
Only intensity I1 is shown and only (half) the center region is shown.

The intensity curves are even functions about the doppler center and the
curves for 12 are complementary to those shown for Il' It is seen that as
the pressure increases from 1-7 torr, the half range over which two of the
svlutions are imaginary increases from approximately 1-5.5 MHz. In addition
it is seen that both the width of the dip and the center spike increases.
However the depth of both the spike and the dip remains constant. These
results have been summarized in Fig (11) which shows the values of the various
widths as a function of pressure with the equivalent value of n. It is

seen that the widths are approximately a linear function of pressure.

Figs (12, 13) show the values of the intensity I. at the doppler center for

1
values of Rl . 10-5, 16’6 respectively. Pressure is included as a parameter.

The results show that for decreasing values of scattering, the competition

widths decrease, roughly as the square root of the scattering.

Figures (14, 15) show the intensity I, for varying values of K (the ratio of
-3

the backscattering coefficients) for values of R = 10~ , 10 7, respectively.
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Figure 12. Mode competition as a Function of
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The hole width chosen corresponds to a pressure of 3 torr. The results show =
agreement with R 1/2 width dependence rule, and show that the rule I, = KI

1 2’
K<1, at the doppler center is more nearly satisfied for larger values of R.

In all the curves shown, the gain/loss ratio has beenyﬁade equal for both

beams. Figures (16, 17) show the zero backscatter selutions for the intensities
11’ 12, respectively, for zero pressure and a differential ggin/loss ratiow.

It is seen that for increasing values of the differential gain/lass, the
frequency range over which mode competltlon occurs, increases. For large values
of differential gain/loss (~10~ ), the beam discriminated against (I ) is

shown to be extinguished. 17 Figures (18-21) show intensity I

Y

1 for both backscatter

(R1 10° ) and differential gain/loss (+ 10 ', + 10 5). The pressure is

3 torr and the scattering ratioi. K is a parameter. It is seen that for the

value of the backscattering chosen the backscattering competition dominates.
Also the dip acts in the same manner as the zero-backscatter solution in the
sense that as the losses favor beam 12, the intensity’.’I1
zero. However, the spike acts in the opposite sense in that it increases.

dips towards

The effect is more pronounced for greater differential gain/loss.
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16; COLLISION EFFECTS IN THE MODE COMPETITION EQUATIONS

From the wqu of”Sioke,;Javan}SFork, Poliacklgnd others, it is known:: .y

that the effects of collisions cannot always be neglected in the analysis of
the He-Ne laser. In Fork and Pollackslwork mode competition between successive
longituddnal modes in.a linear laser was observed as the two modes were
symetrically spaced about the doppler center. Their experimental results

were explained by makiﬁg two modifications in Lamb's theory.3 The hole width
was taken to be a 1ipear function of the total pressure of the helium and

neon. The gain curve (imaginary part of the "plasma dispersion function")

was considered to be a linear combination of the gain curve plus the dispersion
curve (veal part of the plasma dispersion function). The coupling constant

was a linear function of pressure. The mixing of the gain and dispersion

curves produces an assymetric line shape.

Assymetry was taken into account in the mode competition equations (97, 98)
by writing, for the doppler limit and for "low" pressures, (c<<.1),

EEOR S

‘exp(-£7) ~ exp(-£2) + cE(E) , | (117)
F(8) ~ F(§)- § ¢ exp (-€°) (118)

From Eq (117), the maximum of the gain curve is shifted to

c
gmax =,§ . (119)

In frequéncy units,

= 120
Aohige = 20 o (MHz) (120)
The pressure shift has been measured as 4.2 MHz/tor%awhich give a value of

c to be

c =0.02 p kP in torr) (121)

Using the form of assymetry given by Eqs (117, 118), the mode competition

equations t97, G98) were solved for the intensities I, I The results for

o
I, are shown in Fig (22). Equation (121) was not used and value of c was
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L

taken as 10-2, 10-3, 1077, The pressure (to determine hode width) was 3
torr, Rl = 107&; K ='0;5.- The results show the competition spike and dip to
be shifted towards §max,_but“the shift is much smaller than the shift of the

maximum of the'gainvcﬁrve.'

When Szoke and Javanlinvestigated velocity shift effects in a linear laser,
they found that mode competition between the waves traveling in apposite
directiohs was reduéed, The reduction in competifion could be expressed

by replacing the Lorentzian factor in Eqs (97, 98) (intthe standing wave case)

by : ;

S(e) -'i, ié!) (122)
1

Both 1 and ny are linear functions of pressure and 1 £ n'. The equality

holds for zero pressure.

The mode competition equations were solved on the computor using the velocity
shift effect given by Eq (122). The results showed no mode competition at

the doppler center. The solution showed only complete extinction possible

for either beam and complete co-existance. An investigation of the equations
showed that whenever the maximum value of the Lorentzian factor was appreciably

different from unity. The competition at the doppler center disappeared.

A mixture of isotopes will effectively reduce the maximum value of the
Lorentzian fuoction from unity and hence should eliminate the backscattering
mode competition. The equations were run for the case of matural neon and

this was found to be so.
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17. EXPERIMENT - GENERAL DESCRIPTION

The first part of this report presents a theoretical description of a traveling
wave ring laser in the presence of scattering effects. This part will present
the experimental work performed with the aim of showing correlation with the

theoretical model.

To this end the following experimental program was carried out. A ring laser
was built and operated on the neon 1.15 micron transition. Mode competition
between the oppositely directed traveling waves of a single longitudinal

mode was investigated by tuning the frequency of oscillation across the doppler
gain profile and measuring the intensities of the beams. The total pressure

of the gas was treated as a parameter. In addition mode competition was
investigated as a function of reflecting a portion of one of the transmitted

beams back into the direction of the other.

While the beams were frequency locked changes in the phase difference between
the oppositely directed beams were investigated as a function of tuning the
frequency of oscillation across the doppler gain profile. The phase difference
was alsc measured as a function of varying the phase of the back scattered
energy from one of the beams, which was scattered into the direction of the

other beam.

A block diagram of the experimental system is shown in Fig..(23).
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18. QUARTZ BLOCK RING LASER

The ring laser used in the experiments has been constructed from a single
piece of fused quartz. The holes (4.5 mmu, diameter) defindingtkhe' laser pakths
were made in the form of an equilateral triangte.: The total path length is
58.9 cm. giving a longitudinal mode spacing of 509 MHz. Excitation is d.c.
with provision of exciting, by halves, a maximum of two legs. Two of the
mirrors are flat (X/10) and one is curved with a radius of curviture of

3 meters.

The mirrors are coated for operation on the neon 1.15 micron transition.

One of the mirrors has a transmission of 0.62 percent, while the other two
have a transmission of .28 percent. All three have a scattering loss of

0v2 - 0.3 percent.hThe diffraction loss is 0.1 - 0.2 percent giving a total
loss of 2 percent. ...design anc.ygis is.agiven in A-oeniizz It Operation is
restricted to a single transverse mode by means of a 2.2 mm1 aperature placed
symetrically with respect to the curved mirror. Visual confirmation was made
of single transverse mode operation by means of an infra=red image converter.
Both beams were observed to bg linearly polarized in the low reflection loss
plane. Typical current excitation (8 mm)) allowed operation with either one
orttwo longitudinal modeg,depending on the position of the cavity modes with

respect to the doppler gain profile.

The laser was always operated while attached to a vacuum fill station, allowing
3. Ne20 (99.99, percent) to be

varied. Frequency tuning was accomplished by thermally heating the quartz

the total pressure of a 10:1 mixture of He

block structure as a whole. Tuning could thus be varied in both directioms.

For a temperature change of AT, the cavity length changes by
AL = L o AT (123)

where o = 5.5 x 10-7/0C (Linear expansion of quartz))

The frequency change due to a change in cavity length AL is

'y »‘:_l‘ (] ey 1 ™ 7 L e l/ 2 I
Lo Sociuencey eheno Ny = -foLyL : . (124)

The negative sign implies that increasing the length causes the frequency

to decrease. For a cavity length increase of 1 wavelength,
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Dy =-8/L (125)
and the temperature change, ~: for a mode spacing of 509MHz, is
ALY,
At = —X  =3.6% (126)
ac

Tuning has been accomplished over five modes with no difficulty.

The thermal tlime constant of the quartz block has been measured by heating
one surfacé and measuring the time intervals over which successive cavity
modes are tuned across the doppler gain profile. Meausrements indicate a
time constant of 22 - 25 minutes. A rough theoretical estimate of the time
constant of a homogeneous rectangular parallelopiped where one dimension is

much smaller than the others, is

2
v = 2% | 16 min (127)

T

where

p - density (22 gm/cms)

K - thermal conductivity (3.2 ¥ 10-3

cal/sec. cm’€)
C- specific heat (0.17 cal/gmoc)
A- thickness of quartz (L.L4 cm)
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19. ZEEMAN CELL FREQUENCY MONITOR

In operating the laser it appeared desirable to have an instrument which

could directly measure the frequency of oscillation, rather than rely on

something indirect, such as power measurements. The measurement of the temperature
of the quartz block would not be conclusive, since a question could arise as

to the actual response of the cavity length to the temperature at a given

point. In addition, for tuning over a small frequency range, there would

be a question as to what point under the doppler curve the frequency is oscillating.

To avoid uncertainties of this kind, it was decided to desigh and build a device
to directly measure the frequency of oscillation. Resolution should be as
good as possible with a minimum resolution of a few MHz. To this end the

Zeeman cell frequency monitor was designed.

Frequency Monitor

The frequency monitar operates on the output of one laser gyro beam to determine
the laser operating frequency as defined by the cavity dimensions. Operation
of the frequency monitor is explained with reference to Figure 24, (Further
circuit details are found in Figure 26 and are subsequent}ly explained.) The
linearly polarized light from one laser gyro beam passes through a quarter

wave plate to become circularly polarized. The light then passes through the
absorption (or gain) tube containing a helium-neon mixture operated with a

d.c. discharge. An alternating axial magnetic field is generated by an a.c.
current in the coil surrounding the discharge tube. The laser light passing
through the gain tube is modulated by the axial magnetic field at a modulation
depth which depends on the laser operating frequency relative to the center of
the doppler curve as shown in Figure 25a. Operation at frequencies higher or
lower than the center of the doppler curve is identified by the relative phase
of the modulated light referred to the modulating current. The modulated light
signal is sensed by a lead sulphide detector, preamplified, and then demodulated
in a phase sensitive demodulator. The output of the phase sensitive demodulator
is then a typical "discriminator" curve as shown in Figure 25b. From the phase
sensitive demodulator the signal goes to a current amplifier which superposes

a d.c. current in the coil generating the magnetic field. 1In operation as a

closed loop system the d.c. current takes on a value such that the d.c. magnetic
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field bias nulls the a.c. signal at the fundamental of the reference (or
modulation) frequency. When the system is operating closed loop in a nulled
condition the magnitude of the d.c. current is a measure of the laser
oscillating frequency. By using closed loop operation, the frequency measurement
is largely independent of fluctuations in laser intensity, peak values of the

a.c. magnetic field, and absorption or gain of the discharge tube.

Further details of the frequency monitor are described with reference to
Figure 26. The discharge tube is Tmm internal diameter and 16.5 inches

long. The active discharge length is 15.5 inches. The coil surrounding the
tube is wound with 12 layers No. 20 copper wire, giving a total of 4L50

turns or 318 turns per inch. The d.c. resistance of the coil is 13 ohms, and

the inductance at 400 cycles is 32 millihenries.

The discharge tube is filled to a pressure of 6.4 torr with a 10:1 mixture
of He3 and Ne20. The discharge is operated from a high voltage power supply
at a current of 10 ma. A 50K ohm resistor in series with the discharge tube

stabilizes the discharge with a 1400 volt drop across the tube.

To isolate the effects of the magnetic field from the laser, the coil is enclosed

in a mu-metal shield.

An infrared-pass filter is located ahead of the detector and serves to reject
the visible light generated by the discharge and the laser. The lead sulphide
cell is operated with a 2215 volt bias and a 1 megohm load resistor. The

a.c. signal developed across the load resistor is coupled by an 0.1 mfd cap-

acitor to the preamplifier.

The preamplifier consists of a Burr-Brown model 1506 solid state operational
amplifier having an open loop gain of 106 db. The amplifier is connected to
give a gain of 1000 in a non-inverting configuration which provides high
impedance input to the lead sulphide cell. A 0.001 mfd capacitor in parallel
with the feedback resistor produces a roll-off of the frequency response
above the 400 modulation frequency for the purpose of noise rejection. Low

frequencies are rejected by the 1.0 mfd outputi coupling capacitor.
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The phase sensitive demodulator is a Princeton Applied Research Corporation
model JB-4 having a gain of 10,000, and selectable filtering time constants
from 0.001 to 10 seconds. The input a.c. amplifier in the phase sensitive
demodulation is highly frequency selective with respect to the reference
frequency (400 cps). The second harmonic is rejected by a factor of 1000.
Second harmonic rejection is highly desirable because a relatively large
second harmonci component (compared to the signal) is produced when the system

is operating in a closed loop condition near null. (Second harmonic signal

content is shown in Figure 25a.).

The d.c. output of the phase sensitive demodulator is of push-pull form,

offset 6 volts below ground. This output is conveniently coupled into the
current amplifier using the Burr Brown modell506 solid state amplifier as a
differential operational amplifier because a common mode voltage up to 10

volts can be tolerated. The current amplifier is designed to operate the
output power transistors in class B operation for maximum efficiency. The
power transistors are selected to operate as a complimentary symmetry, NPN-PNP
pair. Operating the high gain amplifier into the output power transistors
effectively reduces the "turn-on" effect (or dead zone) near zero to a negligible
value. The feedback around the high gain operational amplifier is closed

from the power transistor output point. This places the feedback from the load
(current coil) to the amplifier input. The feedback arrangements produces

good linearity in the current amplifier and results in low quiescent current

in the power transistors at null.

Isolation between the a.c. and d.c. current circuits driving the coil is
provided by the 0.075 henry choke and 1.0 mfd capacitor operated in parallel.
The two elements present a high impedance at 400 cps, but present a resistance

of only 0.075 ohms to the flow of d.c. current.

The amplifier which drives the a.c. current in the coil:is a Bogen model

MU130 power amplifier capable of a 30 va output. Its output transformer is
operated with the secondary floating to allow a ground reference to be established
only by the d.c. current amplifier. The common and 16 ohm imperdance taps on the

output transformer are used for connection to the current coil. In operation
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the power amplifier delivers 1 ampere peak current at 400 cps into the current
coil. The a.c. power amplifier is connected to the cdil in series with a 6 mfd
capacitor. This capgcitor series resonates with the coil to match into the
power amplifier impedance. The capacitor also serves to block any d.c.

current into the power amplifier output transformer secondary. The a.c.

and d.c. currents are metered at the respective amplifier outputs.

The oscillator is a Hewlett-Packard model 200 CD. The oscillator output
provides the reference voltage for the phase sensitive demodulator and also
the input signal for the a.c. power amplifier. An oscillator ~output setting
of 0.3 volts is adequate to drive the power amplifier through its auxiliary
input. The same oscillator output level is adequate as the reference signal
in the phase sensitive demodulator since adjustment of the reference level can

be made internal to the demodulator.

The frequency monitor output point shown in Figure 26 goes to the data recording
system. This point appears across the current coil (with a negligible d.c.

drop in the choke) and registers the d.c. voltage across the coil. This

output voltage is proportional to the d.c. current in the coil, and is there-

fore a measure of the laser gyro operating frequency.
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20. FREQUENCY MONITOR AND MODE COMPETITION

The amplitudes of both oppésitely directed traveling waves were monitored
while the laser was operated with a d.c. discharge currentoof 8-9 m.a. The
detectors were Hoffman EAT photovoltaic silicon cells with an infrared-pass
optical filter. The outputs were fed to two microvoltmeters, a Kintel model
207B and a Keithley Instruments model 610A electrommeter operating as a
microvoltmeter. The microvoltmeters also served as a high gain d.c. amplifier

which allowed the meter output to be recorded directly on a strip chart recorder.

The frequency of the laser output was tured by thermally heating the quartz
block structure as a whole. A 3/16 inch thick copper hea' transfer plate in
contact with the bottom surface of the quartz block was warmed or cooled by

circulating water in copper coils soldered to the bottom surface of the

plate. Heating and cooling rate was controlled by selecting the water temperature

and flow rate.

Figure (27) shows a typical amplitude vs frequency scan as monitored on a

four channel strip recorder. The third and fourth channels are recordings of

the counterclockwise and clockwise laser beam intensities. The Kintel meter
monitored the counterclockwise beam intensity. The time consistant of this
meter, as measured from the laser output, was 0.25 sec. ihe time constant of
the Keithley meter was at least an order of magnitude faster and thetime response

for the clockwise beam was determined by the recorder itself.

It was possible to monitor the output from each beam from all three mirrors.

One of the output signals from the clockwise beam was fed into the frequency
monitor gain tube. The d.c. closed loop output current from the frequency
monitor is shown recorded in the second channel. The first recorder channel
shows the temperature difference between the:bottom andttop surfaces of the
quartz block. Increasing temperature difference is down. The strip chart
recorder was run at a speed of 0.2 mm/sec. Each mark at the top of the strip

chart corresponds to 75 mm.
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As discussed in section 19, the d.c. current output from the frequency monitor
is a linear function of the difference between the frequency of oscillation of
the laser and the frequency at which the gain in the Zeeman cell is a maximum.
The operation of the frequency monitor requires single mode operation. Asa
éavity mode is tuned across the doppler gain profile, the output is a ramp

type function as shown in Fig 27. The sharp jump in the ramp occurs as one
mode on the low frequency side (tuning is accomplished by heating which increases
the cavity length and decreases the oscillation frequency) drops below threshold
and another on the high frequency side comes above threshold. As shown in

Fig 27, the gain/loss ratio is high enough such that when two adjacent cavity
modes are symetrically spaced about the doppler center, both are above
threshold.

Figure 27 shows five cavity modes being tuned across the doppler gain profile.
The intensity date shown the characteristic linear laser tuning peak around the
doppler center. 1In addition, sharp competition regions are found when one
mode is oscillating near the doppler center and when two modes are symatrically

spaced about the doppler center.

The cavity mode spacing is 509 MHz. The off center competition spike are rather
sharp (0.3-0.6 MHz) and provide a frequency marker to calibrate the frequency

scale. The competition spikes near the doppler center are 2-3 MHz wide.

As a means of checking the operation of the frequency monitor, the position of
the peak of the center competition spike was measured by two methods. In

both cases it was assumed that the thermal heating of the quartz block can be
described by one thermal time constant. Three known frequencies can determine
the time constant. 1In the first case the three frequencies used were three ad-
jacent off center competition spikes.. Fig. (27) shows that there are four off
center competition frequencies, as three complete modes are scanned across the
doppler gain profile. Thus two time constants were calculated using two groups
of adjacent competition points. The first time constant is used for calculations

involving the first two complete cavity modes while the second is used for the
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second and third modes. The position of the center spike (measured with
respect to the previous off center competition spike) was calculated. The
results are shown in Table I. The spacing between off center spike was chosen

as 509 MHz. In all cases the center spike was on the low frequency side of

one half the mode seperation.

The second method made use of the frequency monitor data. Again three points

were used to determine the time constant. This time the points chosen were

those where the d.c. feedback current was the same over three successive

modes. The currents were chosen at 5 mm intervals. Six time constants were
chosen in each group and averaged. Three groups were used. The incomplete

modes at both ends were able to be used for this type analysis. Using the
averaged time constant in each group, the position of the center competition spike
was again calculated . They are summarized in Table I. 1In addition, using the
frequency monitor data, the spacing between successive off center competition

spikes was calculated and included in Table I.

From Table I, it is seen that there is good correspondence between the results
obtained with the power data and those obtained with the frequency monitor data.
Only in the third complete mode is there a discrepancy from the expected results.
This might be due to the fact that the tuning time for the third mode was 15
minutes and the single time constant assumption may not be valid over this

range of the exponential.

An error analysis was made of the expected accuracy in calculating frequency in-
tervals. It was assumed that the dominent error arises from an inability to
exactly read the times at which mode competition occurs. It was assumed that
this error was + 0.1 mm and is random for each time interval. This gave

an accuracy for each frequency interval of + 2 MHz. The results in Table I

show correlation to within this error. But withithis error, the displacement of
the centerccompetition spike from the midpoint of the two off center competition

spikes, becomes questionable.
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2l. DETERMINATION OF GAIN/LOSS FROM INTENSITY DATA

As seen from Figs (7,8), the effects-of -small values of backscattering are seen
onl& at the doppler center. At frequencies away from the center, the intensities
of the oppositely directed beams are essentiallyrequal. The self consistant
amplitude equations can be used to fit the data in Fig (27) under this condition.
The center competition spike will be neglected here and the intensity curve

will be considered to vary smoothly through the center.

For this case of equal intensities and neglecting backscattering and for the

beams being frequency locked, Eq. (97) can be solved for the intensity (of either

beam) and is written as

o

I =55 (128)

Using the expressions for the coefficients as given by Eqs. (99-101), Eq. (128)

becomes

NL exp 22
1+ X () (129)

where‘?}is the ratio of gain/loss.

From the date in Fig (27), it is seen that 7}13 large enough such that there is
at least one longitudinal mode above threshold at all frequencies. Since the
mode spacing is 509 MHz, a lower bound can be placed on?% Taking the doppler
width as Ku = 500 MHz, Eq. (129) gives, for I = 0,

N ;o = exp [(509/2) /50017 = 1.3 (130)

The hole width to be used in the Lorentzian function is, for a pressure of 3.2

torr

n' =22.1p + 11.4 = 82.1 MHz (131)

Using this hole width and §] , Eq. (129) predicts intensity tuning data with a
min

much larger Lamb dip than is seen in Fig (27). To get correlation with the theory,

the collision correction to the Lorentzian function, as given by Eq. (122)

must be used. Thus Eq. (129) must be modified to read
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Lol exp €2
L+ C(e)

(132)
The ratio 1/n: is pressure dependent and is given by15

1 . 1l.5p +11.4
iR Ty (133)

Using the collision corrected expression for the intensity given by Eq. (132)

the value of Y will be determined from the data given in Fig (7). First it should
be noticed that the magnitude of the intensity follows the differenttal temperature
curve. This has been attributed to a misalignment of the aperature. As the block
is heated from the bottom, the block bends and brings the aperature into better
alignment. As heating continues, the thermal gradient in the block decreases

and the alignment problem gets worse. Thus the valve of‘n'will be a function of

mode position.

To calculate q% two valves of intensity must be known, since the data is in
arbitrary units of intensity. One point is the doppler center (E=0). Thus
-1
1 -
IO =K Wl (134)

For the second point; the value of the intensity used is when the:two.modes:
are symetrically placed about the doppler center. To eliminate problems: 6f'mode
competition, the value® of the intensity at the tips of the off center mode
competition spokes (always assumed up) were used and 'the:'value was divided
in half. Note that when these spikes are down, they determine the point of
zero 'laser intensity. This is quite important because this allows the subtraction

of backgroup light from the laser discharge.

Writing Eq (132) at & = Y’
1, = K =R exp €,
1+ e )
,ql

(135)

Eliminating the arbitrary constant in Eqs. (134, 135) and solving forcn, one finds




o »fl'4~§w/q'L 1 ¢ 2) -1
e 1+ (/e
GY\ - - ] + (n/1 _|jf E)~ (136)
Zo 1+ (/1)

e L oan)te,) | -

However the data from Fig (27) cannot be directly substituted in Eq. (136)

since the valuse of Io and Iz are obtained at different times and hence

at different values of‘ﬂ. It is necessary to plot IO and Iz as a function of
tuning frequency and use pairs of instaneous values. The results are shown in
Fig (28). The abscissa is untts of tuning across doppler centers for successive
modes. At each doppler center andat each frequency midway between centers

a value of Io and Il was used inEq (136) to.calculate a value of 7Q. The way

in which f)varies as a function of frequency tuning is shown anithe same

figure. A smooth’ curve has been sketched through all the points. It is seen
that?)ranges from about 1.3-1.5. A plot of differential temperature is also
shown on the same axis (obtained from the first channel "in Fig (27) ). The
differential temperature is seen to have the same shape as ql, although it leads

Nby A
\Y2

Using Eq. (132), a set of cutves of intensity vs frequency were plotted for various
values of T and pressure and are shown in Figs (291-32) . It is seen that the

data in Fig (27)agrees with the calculated curves (ie) (p=3 torr, Ql= 1.3-1.5).
Figures (33-37) show intensity tuning data at various gas pressures. Figure (33)
is at a pressure of 2.9 torr. The Lamb dip is more pronounced and is due to

an increased 7). Figure (34) is for a pressure of 3.2 torr. The center competition
spikes are more pronounced here and it is seen that at the end of the third mode,
the loss has increased such that the mode has dropped below threshold. Figure
(35,36,37) are for a pressure of 4.4, 5.0 and 6.4 torr. 1In Fig (37), the

intensity jumps are gain adjustments.
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Figure 29.

Intensity vs Frequency for
case of Reduced Saturation
Effect Pressure = 1 torr
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Figure 30. Intensity vs Frequency for
case of Reduced Saturation
Effect Pressure = 2 torr
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Figure 31.

Intensity vs Frequency for
case of Reduced Saturation
Effect Pressure = 3 torr
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Figure 32. Intensity vs Frequency for
case of Reduced Saturation
Effect Pressure = 5 torr
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22. MODE COMPETITION - EXTINCTION

The computor solution of the mode compettiion equations for I1 and I2,

in Figs (7,8) predict four possible solutions. The mode . competition discussed

as shown

in the previous 'section has been of type "c", as labeled in Figs, (7,8). Figure
(38) shows a more complicated type of mode competition at a pressure of 6.4 torr.
It shows one cavity mode being tuned back and forth about the doppler center by
heating and cooling the quartz block. I1 is the lower trace. Comparing Figs
(7,8,38), it is seen that I, and I, both leave solution "c"(or possibly "d")

and jump to solution "b". After passing through the center spike, the intensities
jump back to solution "c" or "d". Upon cooling, the intensities jump to solution
"e" but solution "e" becomes complex right at the center and the intensities
quickly jump to solution "b", pass through the center spike and jump back to

solution "d" or "c".

Figures (39-41) show a traversal of the center region with the chartspeed increased
by a factor of 200 (50mm/sec). I, is again the lower trace. Fig. (39) shows a
jump to solution "e". At this chart speed the time constant of 0.25 sec in the
meter monitoring I, becomes apparent. Figure (L40) shows a jump to solution "b".
After passing through the center spike, Fig (41) shows a return to solation

"d" or "c¢". Notice an oscillation between solutions "c" and "d" in Fig (U41).

Figs (42,43) show mode competition at 6.9 torr for one cavity mode being tuned
back and forth (many times) around the doppler center. From the slope of the

frequency monitor, it is seen that each pair is a cooling-heating (increasing-

decreasing frequency)cycle. I, is the lower (clockwise) beam. The frequency monitor

tracks Il. Hence if beéam I; is extinguished, there is no beam to track and the

output drifts. It is of interest to note that when I1 is extinguished and I2
doubles, the frequency monitor output remains constant. However, the frequency

monitor output does reflect intensity surges.

Due to the slower response time of the detector of 12, it is preferable to look

at this beam for a deéscription of the mode competition. Consider the second cycle.
The sequence of solutions are (c,d)-b-(c,d)-e-b-(c,d). The sequence for the third
cycle is (c,d)-b-e-(c,d)---b-e-(c,d). The sequence for the fourth cycle is
(c,d)-e-b-e-(c,d)---b-e-(c,d). Note that the center spike is always downwards for

every cycle indicating that the backscattering into beam 12 is always greater than
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that into beam 12.

The frequency monitor calibration is approximately 12MHz/mm, giving a competition

width of approximately 50 MHz. The center spike is approximately L4 MHz wide.
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22. RELATIONSHIP BETWEEN POSITION OF CENTER SPIKE AND GAIN MAXIMUM

As discussed in the section on the frequency monitor, zero d.c. feedback current
output occurs at the frequency for which the laser beam experiences equal gain
for both maximum excursions of the a.c. magnetic field. For a symetric gain
curve, this frequency is the center of the atomic transition, or "true" doppler
center. However, when the gain curve is assymetric due to pressure broadening

or isotope broadening, the point of zero output will be shifted towards the point

of maximum gain.

To congider this shift, first the magnitude of the a.c. magnetic field for

optimum sensitivity will be calculated. Neglecting assymetric effects, the

gaussian lineshape (normalized) is
2
g = exp (-§7) (137)
If in an a.c. magnetic field the maximum zeeman splitting is §Z, the maximum

differential gain is
2 2
ng = exp [-(§ --§ )7] - exp [-(§ +E7) (138) |

The sensitivity is the derivitive of Ag with respect to €, evaluated at § = 0,

or
g’ = U5 exp - § ° (139)
Eq. (139) has a maximum at
g, =/2/2 (1L0)
Now consider the effect of the addition of another isotope whose transition

center is shifted §i from the center of the second isotope. If the relative

number of atoms of the 2nd isotope is €, the gain is
2 2
g =exp (-§7) +e¢ exp [-(§ - §,)7] (141)

The maximum differential gain in the presence of an a.c. magnetic field is
g =g(§ € +§,) -g(8~8-8) (142)

To find the frequency where the output of the frequency monitor is zero, one

solves Eq. (142) for € when Ag = O. When € << 1, then £<< 1, and one finds
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sinh 2 € €
___EE___i_E (143)

z

gzero =€ exp <-§i2)

When the magnetic spliting is optimized, Eq (140, 143) gives

ero exp (—%ia) sinh 2 §i (1hl)

e

, 2 =
For the Ne20 1.15u transition and when the second isotope is Ne 2, then Si = 0.56
and Eq. (144) becomes

gzero = 1.8 ¢ MHz (¢ in percent) (145)

Using Eq. (1k41), the frequency at which the gain is a maximum was calculated

and found to give the same shift as in Eq. 145.

The frequency monitor was filled with a single isotope such that ¢ = 10_2

percent. Thus the zero shift is much less than the sensitivity of the

instrument.

The collision broadened lineshape is obtained from Eqs. (122,C18) and for
N 1 can be written as

g = exp(-£%) - ELl[1 - 28 B(5)] + cB(g) ( 146)

-
The frequency at which the gain is a maximum is
= _ 1
gmax c/2 (1-2q') (147)

18
The shift has been determined as 4.2 MHz/torr for low pressures.

" C” as

This determines

c =0.015p (p in torr) (1L48)
In obtaining Eq. (148), the relation 15
Nt = §§§6g—ll (p in torr) (1k9)

has been used.

In the presence of an a.c. magnetic field, Eq. (142) holds for the differential
gain, where the gain is given by Eq. (146). Isotope effects are neglected. To
find the frequency where the output of the frequency monitor is zero, one again

sets the differential gain equal to zero. Since §z = 2/2 the Taylor expansion

F(+§) =2F (8,) +¢ F' (8,) +. .. (150)
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is used to give

2
. ~ cF (52) exp (gz )/ 2§z (151)

zero en'

' -5—2T%exp QZE[F(EZ) + ng'(gz)]
z

Using the optimum magnetic field splitting, Eq (151) becomes
£ _ +38¢
zero Zl-l.hSn’) (152)

Comparing Eq. (152, 147), it is seen the frequency at which the output of the

frequency monitor is zero is below that at which the gain is a maximum-

If the magnetic field were reduced such that the assymetry could be expressed

by a linear function, the two expressions would be equal.

The frequency monitor gain cell was filled to a pressure of 6.4 torr. From Egs.

(147, 149) the shift of the gain maximum is 60 MHz to the high side. Note that

at these pressures the frequency shift is no longer linear in pressure and Eq.
(147) is only a rough approximation. From Eq.
output point is 32 MHz.

(152) the zero frequency monitor

In section 20 it has been shown that the center competition spike occurs

within 2-3 MHz of the "true" doppler center. This is opposed to a "gain

maximum'" shift of 17 MHz for a laser pressure of 3.2 torr.
of 32

Thus the sereration
MHz between the zero frequency monitor output and the center competition

spike should be readily observed. Figs. (4kh,L45) show this effect. Figure (L4L)

shows a slow thermal tune (decreasing frequency to the right) through the competition

spike at the doppler center. The time scale is 0.25mm/sec. Points of "zero check"

were placed on the output of the frequency monitor. It is seen that the center
competition spike occurs well to the right (lower frequency) of the point where

the frequency monitor output crosses the zero output. The frequency monitor

calibration is 10-12 MHz/mm giving a seqaration of ~30~35 MHz.

Figure (U45) shows one mode being tuned across the doppler center in an increasing
and decreasing (frequency) direction. Note the slope of the frequency monitor.

The gas pressure in the laser was 7.0 torr. The frequency monitor was tracking

the clockwise beam, hence as the beam is extinguished, the output of the frequency

monitor drifts. The "zero checks" on the frequency monitor have not been ex-

Plicity marked but it can be observed that they lie ~29.5 mm up from the bottom
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of the scale. In both cases the center spike is observed to lie 30-40 MHz on

the low side of the zero frequency output of the frequency monitor.

It should be mentioned that the above was done while the laser was connected to

a vacuum fill station and the gain tube was filled with the same gas and

with the same fill station.
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24. OPTICAL FEEDBACK

Backscattering of energy from one traveling wave into the direction of the
other has been shown to be a cause of mode competition. A method of
controlling the mode competition is to reflect one of the transmitted
beams back into the cavity and into the direction of the other beam.

The reflection mechanism was a 90° prism rather than a mirror. The aligmment
of the prism is much simpler since precise alignment is required in only

one axis. A schematic of the optical feedback technique is shown in Fig (L6).
It is seen that energy from the counter clockwise beam is retroreflected

into the beam traveling in the clockwise direction.

Figure (47) shows a strip chart recording of the intensities of the oppositely
directed beams as a function of tuning three cavity modes across the doppler.
gain profile. The gas pressure was 3.2 torr. It is noticed that the half
maximum width of the center competition spike has increased from the no external
feedback value of 2-3MHz to the feedback value of 30 MHz. The offcenter
competition spikes have also increased in width. Also the competition is

such that the beam whose intensity increases, is always the clockwise beam.

This is consistant with the mode competition model as shown in Figs (7,8).

The convention for labeling the beams I1 or 12 is that the back scattering
coefficients satisfy 32 - KRI’ K<l., The dominating source of backscattered
energy is reflection by the prism of energy from the c.c.w. beam into the
c¢.w. beam. Then the c.c.w. beam must be labeled 11. Note that this labeling
is different from the previous data. This was intentionally done so that

external back scattering could reverse the direction of mode competition.

Referring to Pig (7) for 12, it is seen that solution "c" dips down and agrees
with the direction of competition in the c.c.w beam,

Since the beams are linearly polarized, a polarizer was inserted between

the feedback prism and the laser. The amount of feedback was controlled

4s one mode was continuously scanned back and forth about the doppler center.
It was observed that for decreasing amounts of feedback, the width of the
competition region and depth both decreased. This is shown in Figs (L8-50)

Dt meun. Tno s Y
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for a gas pressure of 2.0 torr. In Fig (48), the angle at which the

polarizer was set, for the first three groups of back and forth cycles was

Oo, ho°, 550, respectively. Maximum feedback is signified by 0°. The

‘last competition spike was for 650. The narrow spikes seen supperimposed

on the intensity curves are the intensities when the feedback prism was
momentarily blocked. In Fig (L9) the second, third and fourth cycles are
for 850, 900, Oo, respectively. Note that the backscattering from the
external prism causes a change in the direction of competition. Figure
(50) shows competition spikes with maximum feedback. The last spike is
for zero feedback. Note that the backscattering extinguishes the c.c.w.

beam and that there is a long assymetric tail on the spike, on the high

frequency side.
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25. PHASE DIFFERENCE BETWEEN OPPOSITELY DIRECTED BEAMS

The phase difference between the oppositely directed beams was measured as

a function of frequency tuning the laser oscillation across the doppler gain
curve. The laser was connected to the fill station and the beams were
frequency synchronized. The fringe pattern was formed by combining the
beams with a single prism. Photographs of the fringe: pattern were taken

through an image converter using XXX film. Figure (L46) shows the fringe

measurement method.

Figure (51) shows the results of a typical frequency scan: The fringe
pattern spacing was adjusted such that only two maximum, at most, occur.
The phase difference is seen to be a constant over the doppler curve, with

jumps of 7 at the mode competition points.

Figure (52) shows a slow seen across the doppler center for a pressure of
3.2 torr. A sequence of I sec exposures were taken at the indicated points.
The fringe pattern results are shown in Figure (53). The vertical line
signifies a reference which was obtained by superimposing a heated wire

on the image converter. It is seen that a constant phase difference

exists with a jump of 7 between frames 19 and 20. Referring to Figure (52)
it is seen that this is the peak of the mode competition spike. The frequency
monitor calibration is 10 - 12 MHz/mm, giving a mode competition spike
width of 1.4-1.7.MHz. Figure (54) shows the results of a slower scan over
a period of 5 hours. A portion of the recorder chart is shown in Fig (Ll).
The times at which the fringe measurements were taken are noted at the
bottom border. The frequency monitor output and the intensity outputs over
the entire measurement period are sketched in Fig (54). Again, the results

show a constant phase difference with a jump of 7 at the doppler center.
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26. ROTATION DRIFT DATA

As a means of investigating the stability of the laser when operated as an integ-
rating gyro, a fringe pattern was formed from the outputs of the oppositely
directed beams, as shown in Fig (46). When the laser is rapidly rotated, the
two beams are unlocked in frequency and there is a motion of the fringe pattern

at the frequency difference rate.

A direct measurement of the fringe pattern rate of motion determines the angular
velocity at which the laser is rotated. A count of the number of fringe pattern
cycles passing a fixed detector determines the amgular displacement of the

laser.

The laser was rapidly turned, first in one direction and then in the other.

The magnitude of the rotation rate was the same for both directioms and was much
larger than the lock-in threshold. As the laser was turned in, sgy, the
positive direction, positive counts accumulated. When the laser turned in the
negative direction, negative counts were subtracted from the total. At the end
of a fixed interval of 100 seconds (measured to a precision of better than 1
part in 106), the net number of counts were recorded. The net number of error

counts attributed to .atnétrdisplacement was estimated to be less than 10 counts.

If the laser were on a frame such that the optical paths for the oppositely -
directed rotating beams were equal (no null shift bias and no rotational

motion such as earths rate) the net number of accumulated counts during the 100
second interval would be equal to the error counts. After five hours the average
net accumulated counts per one hour interval was 16,288 counts, corresponding

to a net rotation of 14.2 deg/hr. The accumulated counts per 100 second

interval is shown in Fig. (55). A formal analysis is given in Appendix G.
The rotaticn was in the direction of the rotation of the earth and at this
lattitude the net average bias null shift was 3.6 Beg/hr. As a measure of the

accuracy of the bias rotation a lo value was calculated as 0.34 deg/hr.

The method used in calculating the lo value is as follows. The time interval
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was chosen as one hour. The difference between accumulated counts over time
intervals of 36 x 100 sec. = 1 hour was obtained for successive 100 second

points. The RMS of the accumulated one hour counts was 388 counts Which

gave the above lo value.

The percentage of points which differed from the average one hour accumulated
counts by: less than the lo value was 58.3 percent; less than the 20 values
was 96.9 percent; less than the 3¢ value was 100.0 percent. Thus the distrib-
ution,icompared. to'a.normalidistribution, is more flattened at the center and
falls off slightly faster at the wings. The largest deviation from the mean

was ‘2v1iig. |
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27. EQUIPMENT LIST

Quartz Block Ring Laser and Dielectric Coated Mirrors (1.15u):

D.C. Power Supply for Laser:

Detectors (two) for 1.15p radiation, Hoffman EATEl Photovoltaic Silicon Cells:
Infra-red Pass Optical Filters (two) for Detectors:

D.C. Amplifiers for Detectors, (one) Kintel Model 207B and (one) Keithley
Instruments Mode 610A Electrometer:

Four Channel Sanborn Strip Chart Recorders:
Thermistors (two) for Temperature Monitoring of Quartz Block:

Zeeman Cell Frequency Monitor:

3 20

Vacuum Fill Station and He” and Ne = gas:

Right Angle Prism (two) for Fringe Pattern and for Back Reflection:
Optical Wedge

Infra-red Image Convertor:

Heat Transfer Plate for Thermal Tuning of Laser:

Glan Thomson Prism Polarizer:

35 mm Camera (xxx Film) for Fringe Pattern Recording:
Heated Wire for Fringe Pattern Reference

Honeywell 1800 Computor:

Honeywell 40O Computor:

Rate Table-Lietz

Optical Gate:

Digital Counter, Computor Measurements Co. Model 2887A:
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APPENDIX A

Determination of Self-consistant Equations

Consider the field to be a linearly polarized plane wave with the Poynting
vector in the z-direction. It is assumed that the field can be closed upon
itself by some means without losing its plane wave properties. Thus Maxwell's
equations can be solved in Cartesian coerdinates for one dimension only. It
is also assumed that the frame is rotating with a projection of the angular

velocity of (ﬂﬂro along the normal to the plane of the cavity.

¢)

The one-dimensional form of Maxwell's equations expressed in the rotating

11

frame' are (MKS units)

OE , OB _

=t 0 (4D
gg +-%% +J=0 |, (a2)
B=pH-E , (a3)
D=e¢E+P-al |, (Ak)
J=oE+0 E, , (45)

Where
a=2aq_ /() (46)

and L is the optical path of the cavity and A is the geometric area enclosed by
L. Maxwell's equations are written only to first order in Qrot' The effects
of a medium in the cavity have been taken into account, to first order, by

considering L to be the optical path traversed by the light bemn¥9/
In BEquation (A5) the éurrent density has been Wwritten as:the-sum of two terms.

The first represents the losses of the cavity and the fictional conductivity

can be expressed in terms of the passive Q of the cavity as

o/e, = w/Q (AT)
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The second term in Equation (A5) represents losses due to forward scattering

and back scattering. Whether or not this term is actually a loss will depend
upon the phase of the scattered radiation with respect to the phase of the oscil-
lations. This term and the term in P in Equation (A4) will be treated as a

source term in the inhomogeneous wave equation for the electric field intensity.

Combining Equations (Al - A5, A7) the one dimensional inhomogeneous wave

equation for the electric field intensity becomes

2 2 2 2 o OE
1 O°E w OF Q°E . 2a OdE _wP 95"
e 322 T Q @f *t 52 +'e0uo dz0t e, - E; ot (48)

o o

In Equation (A8) only terms linear in "a" have been retained and since the
macroscopic polerization is nearly monochromatic, the second time derivative of

P has been replaced by —w2P.

For the case of an empty lossless cavity (no scattering) containing two oppositely
directed traveling waves, the solution of Equation (A8) gives
E(z,t) = E, sin (Kz +Qt) +E

sin (Kz - Qt). (49) .

1 2

This leads one to expand the solution of Equation (A8) into the set of empty

cavity normal mode eigenfunctions (ECNME)

E(z,t) =Z [a (t) U (2) +E& (t) v (2))] (Al0)
with

U, (2z) =sin Kz, (A11)

Vn((z)~= cos K z . (A12)

For a ring cavity of length L, E(z,t) satisfies periodic boundary conditions

giving the wave number

K = 2m/L . (A13)
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The ECNME satisfy the equation
I 2 U (Z)
| 2 n
| =% + e, O Viz)| =0 - (AlL)
Lﬂz n

Making use of the orthogonality properties of the ECNME, equations (A8, AlO,

Alk) give the set of coupled equations for the time dependent coefficients of
ECNME as

& L, %A ) <Pk W2 o,
+ — — +Q " A - 2aK == P - — = E_*, (Al5)
dt2 Qn dt n “n e €, n €, dt “sn
o
d A dA 2 o}
B4 8- By 4o ag SS9 e 3 _sd 5 , (A16)
d 2 Q dt n'n n dt € n e_dt sn
t n (o} o
with
"L
Pn(t) = (2/1) J P (z,t) Un(z) dz, (A17)
(o]
~ L !
Pn(t) = (2/1) P (z,t) Vn(z) dz, (A18)
Yo
L
Esn(t) = (2/L) J, Eg (z,t) Un(z) dz, (A19)
L
L (6) = (2/1) fo E(z,t) V_(2) dz. (A20)

In Equations (A15, Al6) the Q of each mode has been subscripted for greater

generality.

As discussed by Lamb, for the case of the principal mode separation being
much greater than the passive cavity width such that time dependent Fourier
components of An which are far removed from the cavity resonance can be

neglected, one can write

An(t) = Eln(t) cos eln + E2n(t) cos 6, (A21)
An(t) = Eln(t) sin 6, - Egn(t) sin 6, (A22)




fy

e

where

6, =w, t +v¢in(t) i=1,2. (A23)
The Fourier components of the polarization are written as "in phase" and "in

quadrature" term with respect to frequency "one", or
Pn(t) = Sln(t) sin 6, + Cln(t) cos 6, (A2L4)

P (t) =ﬂSln(t) since

a m t Cln(t) cos 6, (A25)

In Equations (A21-A25), the time dependent coefficients are slowly varying
with respect to optical frequencies. The form of equations (A21, A22) are
such as to reduce, in an empty cavity to two oppositely directed traveling

waves with different frequencies and amplitudes.

Now to consider the scattering source terms in Equations (A15, Al6). Refer

to Figure Al. It will be assumed that there exists some mechanism for

(Bt +9,) = - E;(0;t +9))
s2E2(w2t +¢y + 82) -— — lel(wlt +@, + 61)
rlEl(wlt +9, +-¢1) - - reEe(w2t +o, + €2)

Figure Al. Scattering Source Terms

both forward and back scattering. For forward scattering, some of the
energy from each beam is scattered in the same direction as thé beam from
which the scattered energy originated, but with some phase angle. For back
scattering, some of the energy from each beam is scattered in the opposite
direction of the beam from which the scattered energy originates, again
with some aribitrary phase angle. Thus going in the same direction as

beam "one", is scattered energy of the same frequency as beam "one" but
with some phase difference, plus energy with the frequency of beam "two".
The same type of statement applies to the energy traveling in the opposite

direction. Using the traveling wave formalism as in Eqs. (A9, Al0) and
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substituting. into Eqs. (Al9, A20), the Fourier components of the scattering
fields are found as

Egn = TinFp €08 (64 +€,) + oo, c08 (85 + €, ) {
(A26)
+ s, E, cos (6ln + Sln) + 8, E, cos (62n + 62n)
Esn = _rlnEln sin (eln + eln) + r2nE2n sin (62n + e2n)
(A27)

+s; B, sin (61n + Sln) - s, B, sin (92n + 82n)

The terms in r,, and Sin (i = 1,2) signify energy being back and forward
scattered, respectively, into the nth mode traveling in the direction of the
radiation oscillating at frequency W, The r and s coefficients are the back
and forward scattering coefficients, respectively, and are considered to be

much less than unity.

Substituting Equations (A21-A27) into Equations (Al5, A16) and equating coef-
ficients of sin elh and cos eln to zero, four equations are obtained, which

when manipulated give

o
w =2 (T - _ s ,
Eln +'§6; Eln - heo (Cln Sln) 2 r2nE2n cos (wn + e2n) . ;
o, (A28)
e °1n T1n ©°% O
E. +p— E, =12 (s C, ) sin § (s, +C, ) cos § ( .
2n §Qn 2n €, 1n 1n 1n 1n o
oy g (429)
- e~ TipFin ©O8 O €1n) = B SpoEp, €08 B,
o o
. w AY Q’ AY
- = '8
(an O1n) Eln = Tg CI S1n) t 58 TopBop, sin (V¥ €op)
oy (A30)
+ e slnEln sin 61




AT

; _w ~ i ~ o
(02171 - 2!1) E2n = Eé—o [(Cln - Sln) cos an (Sln + Cln) sin \]Jn]
% . g . (A31)
- EE; ) .Eq, sin (wn - eln) +~§E; 8onEo, 8in By
where
Vo= 92n -6, = (w2 - wl)t + (¢2 - wl) (A32)

is a slowly varying function of time. In the derivation of Equations (A27-
A31), second time derivatives of slowly varying functions of time have been

neglected.

It should be noticed that in Equations (A30, A31), the ECNME frequencies for
th

the n mode, Qn, have been replaced by Q,,» where
T 2
Q,, =Q_ +akn c (A33)

_ 2
an = On - aKn ¢ (A34)
This occurred because of the coupling terms linear in "a" in Equations
(A15, A16) and could be seen most easily by considering the solution of

Equations (Al15, Al16) for an empty lossless cavity. For this case

Expressing An(t) and K;(t) by Eqs. (A21, A22) and substituting into Eqs.
(A15, A16) for the empty cavity case, one finds, upon equating coefficients

of sin wlnt and cos w nt to zero, the equations

1

2 2 2
wy ~ - Q% - 2aK cTw, (A35)

]
o

2 02+2Kc%) (A36)
Yin ~%n A 1n

]
o

Since u)2 - 02 ~ 2w (w - )
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Eqs. (A35, A36) become
. 2
Wy = Qn +aK ¢~ , (A37)
2
w, = Qn - aK c” . (A38)

In Eqs. (A37, A38), ®;,» W, are the ECNME Q,,» Qy, introduced in Eqs.
(A30, A31). From the definition of "a" given in Eq. A6, the passive cavity

frequency splitting is given by

Qp, - 0, =4em) baa_ /AL . (A39)

The physical significance of this cavity frequency splitting is that due
to the cavity being located on a rotating frame, the resonant frequency is

different for radiation traveling with and against the rotation.
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APPENDIX B

Analysis of Lock-In Equation

The lock-in equation to be analyzed, is of the form

f =m0 +-% [92 cos (W+€2) +9, cos(y - el)] (B1)

By simple manipulation, Eq. (Bl) can be put into the form

f =0 +-AQL?¢03'(¢’- B) . ) o (B2)
where
‘N)L'= (c¢/L) [pl2 + p22 + 2p1p2 cos (e1 + 62)]1/2’ (B3)
p, sine, - p, sin ¢
Tan B = — L2 2 (BL)

p1 cose1 + p2 cos 62

To simplify the integration of Eq (B2), initial conditions will be chosen

so that at time t =t_ , § =B. Then Eq. (B4) becomes

~¥-B dx t
J M + X, Cos x f dt (B5)
o L to
First consider the case when AQ>-AQL. Then Eq. (B5) can be integrated1 to
give
1/2 -
¥ -B=2tan! K—“} tan 20 ®2-1) Y2 (eoe y/2] (B6)
K-ll L (o] 2
where
k=5 >1 (B7)
L

For the case when K >> 1, then

(K2_~q_- 1)1/2 ~ K, MK~ 9]
and Eq. (B6) reduces to

¥ =B+ (¢t -t) (B8)

l. Chemical Rubber Table of Integrals- llth Edition 1957, P 293 No. 248
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This is the expected result for the charge in the relative phase as a function

of time in the absence of backscattering effects.

The period of time T, over which § change by 27 can be obtained from Ej. (B6)
by writing Eq. (B6)for time t and time t=T. Then subtracting the two

equations and taking the tangent of both sides, one finds.

T= . (B9)
AQL(K2-1)1/2

Using this period to define the observed frequency in the presence of

back scattering, one finds

2 2,1/2
rw = [0 - 0 12, (310)
This equation shows that the effective frequency difference between the oppositely
directed traveling waves, defined in terms of the periodicity of the instantaneous

phase difference is reduced from the no-backscattering value due to the

mutual coupling between the beams. For small values of rotation or,

m<mL s

the beams are frequency locked, or a constant phase difference exists between
the oppositely directed beams. This could be observed from direct integration

of Eq. (BS) for the case of K<1. From the table of integralsl,

A (1-1(2)1/2 (6-t) = 1In (1-1(2)1/2 tan & (y-B) + (14K) (811)
L ° (189 72 tan & (4-8) - (1)
As t - o, Eq (B1ll) gives
1/2
¥y -B =2 tan-1 %;%——— (B12)

Equation (B12) shows that the phase difference §, changes from § = B4r
at threshold (K = 1) to ¢=B+-%ﬂ'at zero input rate. The phase conditions
Eq. (Bl2) can also be obtained directly from Eq. (B12).

At values of K corresponding to rotations slightly above lock-in, Eq. (B6)
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becomes (for K =1 + &, 5<<1)
§ -B =2 tan”} IZL(Q/S)]'/2 tan[20, (6/2)1/2 (t - to)]} (B13)

Thus except for times when the tangent function is approximately zero, the
phase difference is § - B = 7, which is the threshold value. Thus slightly
above lock in threshold the phase remains essentially constant over a period,

and has a rapid jump of 27. This gives rise to the so called distorted

waveforms.
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APPENDIX C

Determination of First Order Polarization

Using the single mode interaction as given by Equation (A60), the first order

Fourier components of the polarization are given by:

1)

IP“( (t))‘ 2iI“ab|2 r L * .

} ) “ ==y im W(v)dv T(v) l N(z,t)dx l dr' exp - 7 ab + ﬂ»}T'
P t

‘/\U ( )\' (e

ol maeoon 410 € v v, conflng < e v, ot

-

[El sin {(wl + Kv)t! +-¢1] - E, sin [(w2 - Kv)t! +-¢2}j Vn(z) + C.C.

where 7' =t - t' and W(v) is the normalized velocity distribution. T(v) is
the proper Lorentz transformation necessary to transform the polarization

back to the cavity frame.

The above expression is simplified by the rotating wave approximation. For
example
exp - (7., + iw)7' cos (w; +Ku)t' = (0
(c2)

exp - iw,t exp -iKvt exp - [7ab +i(w-w, - K] 7'

PO

1

Only the negative frequency component of the cosine function is used to obtain

Eq. (C2). The positive frequency component would give a term of the form
exp - [y, +1 (0 +w, £Kv)] T
and is neglected.

Thus in.making the rotating wave approximation, Equation (Cl) becomes
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(1) i 2
P ()] ilu |t o L © .U z) !
{ n i >=—f7‘;‘7b— J W(v)dv T(v) f N(z,t)dzf dr'y a ( >
w*rgn(l) (t) ) o o) : Vn (z) ;
[El exp -(hnlt +igy +ikvt +y, T')(U (2) + iVn(Z) ) + (c3)

E, exp - (ﬂ»et + g, + ikvt + 72+¢'I(Un(z) ¥ iVn(z) )J+ c.cC.
where

Yig t 7 t (w - 0, +Kv), i =1,2, (ch)

i+

Since U + iV ~ exp + iKz, Equation (C3) is of the form
E, exp - 1(w1t + Kz) + E, exp - 1(w2t - Kz)

Now in transforming the traveling wave fields to the frame of the moving

atom, fields of the form (wt + Kz) were transformed such as to increase the
frequency while fields of the form (wt -Kz) were transformed such as to decrease
the frequency. To transform the polarization back to the cavity frame, it

is only necessary to make the reverse transformation.

Thus, T(v) is exp iKvt and exp - iKvt for the term in E1 and E2, respectively.
As a general rule, the Lorentz transformation can be carried out by placing

the factor exp + iKv next to each bracketed U + iv.
The ECNME are then written in exponential form and second harmonic spatical
terms are neglected, or (neglecting the "n" subscript since only a single long-

itudinal mode is considered to be oscillating)

U +1iV = +i exp (+Kz),

e

) -
.

ne
I+
) i
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The second harmonic spatial terms can be neglected as long as the population
inversion density is slowly varying over spatial distances on the order of
optical wavelengths. The effect of not making this approximation will be

considered in a later section.

Thus Eq. (C3) becomes

2
ill_j_ | 0 =)
Pn(l) (t) = ___EE__I/E exp - i(wlt +»¢1) J dw exp - w2 J dx
h Ku 7 - o
| (c5)
[El exp (-2nx + 2i(§1 + W) x) +E, exp (-iy 2nx +—2i(§2 - wx). 1+ c.c.,
(1) [f b|2 - > =
?% (t) = —2 1/2 exp - i(wit +-Q1) J dw exp - w | dx
AKu T ~® “o )
(co)
[E1 exp (-2nx + 2i(§1 + w)x) - E, exp (-iy - 2nx + 21(§2 - w)x)] + C.C.
where the following substitutions have been made:
1
S ='§KUT' » N = 7ab/Ku’ §i = @H_- w)/Ku, w = v/u , and
the velocity distribution has been chosen as Maxwellian, or
W(v)dv = (1) 2 exp - W (cT)
Since
0
Y2 | aw exp («v° +2twx) = exp -x° | / (€8)
-0
and defining the Hilbert transform of the Gaussian integral as
0
z(g) - 2i I exp (-x2 -2nx + 2ifx) dx, (c9)
o
Eqs. (C5, C6) can be written as
(c10)
P (1) (t) = - (A/e) exp - (U)lt +(P1) [El 2 (gl) +E2 exp ('W) Z (§2)] + C.C.
(1) . (c11)
P (€) = - (1a/2) exp - (w;t +o,) [E;Z (§)) - E, exp (-i¥) 2 (§,)] +cC.C.
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The "in phase" and "in quadrature" Fourier components of the polarization
q p s

as defined in Eqs. (A24, A25), can be obtained as

sn(l) (t) = - A[EZ, (§) +E, cos y 2, (§,) - E, sinyz _(§,)] (c12)
¢,V (0) -~ AlEZ, (6) +E,con 42 (5) - B, sinkz ()] (c13)
s ) = A LEZ, () - B cos 1 2,((5,) - B, singz,(5,) (c1)
%) = - ALEZ, (8) +E, cos § 2, (E) - E, sinyz_(5,)] (c15)

Substituting Egs.(Cl2- C15) into Eqs. (A28 - A31) and neglecting the scattering

terms, the self-consistant equations, to first order, are found to be

1
E; +3 uyqﬁ E,

j = % w/e,) AEjZi (§.) 3 =1,2 (C16)

J

. 1 .
@ - oy - 9)) By = -5 (wfe) aBZ (E,) §=1,2 (c17)

For the doppler with much larger than the natural width (n<<1) the expansion
of Equation (C9) gives

2,(8) =y exp - € - 2n [1 - 2£ F(§)] +0 (n9) (618)
2,(8) = - 2F(5) +/7 & exp - § + 0 (n°) (c19)
with F(§) given by

g€
F(§) = exp (-52) I exp x2 dx , (c20)
o

~€ (1 - 2%6%/3) E<<1l (c21)




-DI--

APPENDIX D

Determination of Second Order Polarization

. . . . . . 2
The second order population inversion density is given as

A 9(2) (Z;V:t) = T(V)A p(O)(Z,V:t) j dr' I dr" [eXp(‘7aT')
) o (D1)
+ exp(-be')] exp - (7ab+-iw)7" Vba(t') Vab(t") + C.C.

where the substitutions 7' =t - t', 7" =t' - t", have been made and the
interaction is given by Equation (38). The zero'th order population inversion

density (inversion in the absence of stimulated emission) is given by

o

80 (z,9,6) =0(v) Nz,0) (v2)
Making use of the rotating wave approximation, only the positive and negative
frequency components of Vba(t')fanﬂ ng(t")’ respectively, give contributions.
The interaction terms then have the form

(D3)
, . . . Lo . .
Vba(t ) ~E, exp [1((»1 + Kv)t +¢,] (U - iv) + E, eXP[l(w2 Kv) t +9,) (U+HV)

Vab(t") ~E, exp[;-i(uo1 + Kv)t" -, (pl] (U + iv) + Egexp[!j-i(wg-xv)t" - cp2] (U-iv)
(Dk)

The cross terms in ElEl have the factor (U.i iV)2 ~ exp + 2iKz and can be

neglected. The interaction terms are then of the form

2
" 1" s 1
vy (e") v l(t ) ~ [El exp 1(w1 +Kv) 7

(D5)

iKvt -iKvt

+ E22 exp i(w2 - Kv)T™"] (UHV)e (U - iV)e

In Equation (D5) the Lorentz transformation has been carried out by the rule

stated in Appendix C.

The double integral on Equation (D1) can now by evaluated to give:
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803 (2,9,6) = n20(® (2,v,0) ﬂ:ll [n - 18, +w)] 7

+ I[n - i(i’,2 - w)] '1] + C.C.

where

W(v) dv = (ﬂ)-l/e exp (-wg) dw,
w =vi/u
Combining the complex congugate term in Eq. D6 and writing

2
np =aol® 4 a2
and averaging over the cavity length, one gets

op (v,t) =N(t) W(v) [1-21 £(§, +v/a) - 21, $(E, - vi)]

where
p L
(t) = i) ¥ (z t) dz
o >

zi

(D6)

(D7)

(D8)

(D9)

(D10)

(D11)
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APPENDIX E

Determination of Third Order Polarization

The third order Fourier components of the polarization are given by

p (3

t)

. 0 L o o ]
n L= - gl%ﬁl& f W(v) T(v)dv j N(z,t)dz J dr! I dr" J drm
5 (3) (t) 0 o o o o
n
- : 1 - " - "
exp (7ab + iw) 7' [exp 7o ™" texp -y, T ] (E1)
u_(2)
lexp - (y_. + dw) 7'" + ¢C.C.]
ab
V (z)
n
1 " n
Vab(t ) Vba(t ) Vab(t ) +c.cC.
where the substitutions
T' = £ = t', ,Tn = £'- t", Tvn = tn - t'” (EE)

have been made and the interaction is given by Equation (38),

The first step to be made towards the evaluation of Eq. (El) 1is the rotating
wave approximation. However in making the rotating wave approximation, great
care must be taken in including all the terms that might possibly give a

contribution to the third order polarization.

From Eq. (38), the interaction Vab(t'), Vba(t"), Vab(t'"), respectively,
can be written as

Vap(t') = [1] =%E1 (U-iV) exp i [(w) +Ka) (& - 7') +9] +

(U HV) exp -i[(w1 +Ky) (t - T) +-q] +

PO =
=1

o (U +iv) exp il{ny - Kw (£ -71') +9,] + (£3)

(U - iV) exp - i[(w2 - Kv) (t -71") +-w2]

Vab(t") =\[2]’ Vab(t'") = [3]

Equation (13) is used to obtain [2] and [3] by letting




t-T t -1 in [2] -E2-

t - T E - 1" -7 ot in [3]

The Lorentz transformation T(v), to transform the polarization back to the

cavity frame can now be caried out. Following the rule introduced in Appendix

C, all factors (U + iV) are replaced by (U +1iV) exp (+ iKvt).

The interaction is ghen divided into+positive and negative frequency components.

For example [1] = [1] + [1], where [1], [1]), represents the part of [1] containing
exp (iwt), exp (-iwt), respectively.

Then the interaction [1 2 3] can be written as eight terms. The terms
[+ + +] and [- - -] can be neglected since they introduce polarization com-

ponents at three times the optical frequency. The terms
[++ -1, [+- 4, [- + 4] (EL)

introduce frequency components of the form exp i(w1 t + @1). Recall that

the formalism discriminates in favor of frequency Wy by writing
w5 t + Py = ¥ +-w1t +-¢1 s
where | is slowly varying with respect to optical frequencies.

The three terms in Eq. (E4) give zero contribution under the rotating wave
approximation. This can be seen by noting that each individual interaction
that has a positive frequency has a factor in 7' of the form exp (-iwlT').
In Eq (EL) the interaction term is multiplied by a factor of the form exp
(-iwT') . Thus there are three factors of the form exp (-iwv ;, and one of
the form exp (iwT), which under the rotating wave approximation, gives

zero contribution. The three remaining terms are
(- +-1, [- -4, [+- -] (E5)

These terms can be simplified by the rotating wave approximation and by
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neglecting rapidly varying special terms (as in the calculation of the first

order polarization in Appendix (). The resulting terms in Eq. (E5) can be

written as

. - Tr) - _id - AT
[E1 (U + iv) exp ( 71- )+ E, (U - iv) exp (-iy V5,7 1) (E6)
2 e 2 AR
[E1 exp -y _T'"" + E,T exp (- 75,7 ")*) +c.c.] +

2 . . s e
By Ep(U - V) exp(-1¥ = 75 1+ (wy - wy - %K) ) [exp (-7, 7)) +

*
exp (-7, 1)1 +

E1E22 (U 41V) exp (-7 7' - (wy - ) = 2Kv) 1")[exp -y, 7' +
exp - 7,71,
where
7';1,_. =7, ti(w-o +R)  i=12 (ET)

Using just the first term in Eq (E6), the third order Fourier ccmponents

of the polarization given by Eq. (El) become

e (3) g m
{ P (1) . L L ® -
;" = E,lﬁl_ xp -i(w, t ) N(z,t) dz W(v)dv "a ‘dr'dr'"
| w T J, L ueaar - [ljarare

| |
[exp (-7,7") +exp (-7, ™)] 33} [(E)(U +4V) exp (-7, 7')") +

] )

. 2 A
- 1 -1 - Ty - - (Rl - I
E, (U - iv) exp (-iy 7o T )il [E1 exp ( 7y - T ) + E, exp( 7o,T }o+

= c.c.] + C.C.

Rapidly varying spatial terms are neglected so that

0 (E9)

and the following substitutions are made




(E10)
(E11)
(E12)
The integral over dt" is easily evaluated and defining
f— 1 ’L
N=1 J N(z,t)dz, (E13)
o
Eq. (E8) becomes
P (3)(1) =2in A exp - i (w,t +9,) dxdy exp [- 2n (x+y]-

1r-1/2 I dw exp(dwe) [E1 exp 2i (El +w)x + E, exp (-iy + 2i (§2 -w)x)] -

[I1 exp 2i (§1 +wy + I, exp 2i (§2 -w)y +c.c.] +c.c.

Since o
J‘ éxp (-w + 2aw) dw =/ T exp (-a2) (E15)

and writing”
Pn(3)(1) = F exp -i(wlt + cpl) +c.c, (E16)
F=<F +F_ , (E17)

it is found that
F_ = 2iAn IJr dxdy exp [-2n(x +y) - (x - 3?)2] [Elll exp 2i§1 (x - y) +
E I, exp 2i(§1x + §2y) + Eyl; exp [-idﬁ + 2i(§2x + §1y)] + (E18)

E L, exp{'fid; +2i 8, (x - Y)H )
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= 2iAn .” dxdy exp [-2n(x +y) - (x + y)2] [Elll exp 21§1 (x +¥%) +
°
E I, exp 2i (§1x - Eey) + E,I, exp{-iw + 2iE, (x + y)]+- (E19)
E,I, exp [-ixy +2i(§2x - §1y)]}].

The integrand in Eq. (E18) can be evaluated by the substitution

o =xXx+y , B=x-y

o
% r 2

JJ dxdy=% | a8 ‘]PB do +% j dBl dor (E20)
re) © - -0

Then using the definition of the Hilbert transform of the Gaussian as found
in Eq. (C9), Eq (E18) becomes

o=zt (512, (8) +E,L, exp (-1y) 2, (E,)
- (E21)
-1 (53, +Bp1y) |1 £(e) Z (0],
where
T(5) =30 z(8) +2 (g)) . (E22)

The integral in Eq. (E19) cah''be 'evaluated-with: the same substitution.as in:i
*'Eq. (E20)- but with ithe: order of integratifon: so that

ﬂ dxdy = %‘[ do fd a8 (E23)
. ~o
Equation (E19) is then evaluated to give
F = iAq[E111[1 +(8) +1in) 2 (§) »EL, exp (-iy)[1&(§, + in) 2(5)] -
1 5y 1 *
“TE Bylp (2(8]) 4 2(82)) - g Bl exp (-1y)(2(5)) + Z(EQ)J]

At this point the significance of the "Doppler approximation" , made in
Lamb's paper:2 can be seen. In the "Doppler Limie" (d.e) for n<«1, the tem
exp - (x + y) can be treated as a delta function in x + Y.
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Since the range of integration for x and y is only over positive values, the
dominant contribution comes from the term in (x - y), which is F_. Referring
to Eqs. (E21, E24), it is seen that the contribution from F_ is an order of n"l
bigger than the contribution from F+.

To evaluate the self-consistant equations, it is seen from Eqs. (A28-A31)
that the following combinations of terms are required.
s -TC_ -
(S +C) cosy +(C ~ S) sin ¢
C+5_ N (E21)
(C-8) cos ¥ + (S - C) siny

The "in phase" and "in quardrature" parts of the Fourier components of the
polarization are defined in Eqs. (A24, A25). Using Eq. (16) to define F
one can write

F = (A + B exp (-i‘k)]/e (E22)

and similar relations for 'i-:, X, B.

~

Then as seen from Eq. (E8), P. and in are related such that A, B, A, B,

are of the form

A~U (U +1iV) a
E~U (U -4iv) b (E23)
A~V (U +1iV) a
B~V (U-iV) b
. . . 2 2 1
When rapidly varying spacial terms are neglected such that U =V = 59
UV = 0, then
A = iA, B = iB (E2L)

By substitution, it can now be shown that the combination of terms given in

Eq (E21) take the simple form of

2Ai’ 2Ar, 2Bi, 2B_, respectively (E2k4a)
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It should be emphasized at this point that there is no § dependence in the
coefficients Arand B. Thus as long as the polarization can be put in the form
of Eq (E23), no terms in |§ arise in the self-consistant equation, which could
lead to lock-in. Reférring back to Eq. (E6), which is the general form of

the interaction after the rotating wave approximation and the neglecting of
the rapidly varying spacial terms). it is seen that Eq. (E23) holds. Thus

for a single oscillating longitudinal mode (one pair of oppositely directed
traveling waves) no combination tone is generated in the non-linear medium

which could lead to frequency locking.

Using F_ (the polarization contribution in the "doppler limit") as given by
Eq. (E21).as given by Eq. (E21) the self-consistant equations,:to third order,

can be written as

1
E;, +5 (0/Q)E,

-

(wfe )AE, 2,(8)) - 1,2.(8)) - 15 £(5) [z, +HE/m)Z ) (E25)

ée +% (#Q)E, =% (w/e )AE, 2z,(8,) - 1,2,(8,) - 1, K(8) [2; H&/n)Z] (E26)
(0 +0y - 0) =3 (w/e)a z,(8) +1,8() [(E/NF, - Z,] (E27)
(0y - Gy - By) =3 (w/e)a 2z, (8) + 1 5(8) [E/NZ, - 7] (E28)

The contribution to the polarization arising from F+! as given by Eq. (E24),
can be evaluated using the same technique. Adding this contribution to the
self-consistant equations changés the backeted terms on the right hand

side of Eqs. (E25, E27). They take on the form

2,(8) - 1, [(1+809z,(8) - 2n(1+8, 2 (5) )] - 1,K(6) x
(E29)
(Z,(8) - g2, (®)] |
2:(8,) + (%/n)lgi(g)[;ii - (/97 -3 1+ (n/§>2‘fzi(;,1:>-;zi(a.é)” -
h (E30)
+2n1; [§,2,(8;) +nz(8)]
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where use has been made of the identity
(n/8) - &/m X(8) = (h/8) L(e) (E31)
Similar equations to Eqs (E29, E30) hold for beam "two".

If the delta function approximation2 were made, the bracketed parts on the
right hand side of Eqs (E25, E27) would read

z, (8) -Jm 1y - 7 1,4(8) ((232)

z. (8)) +(8/n) Jr 1, £(8) (£33)

Thus the delta function approximation not only neglects terms on the order of

N, but also neglects gaussian factors in the third order polarization terms.
The neglect of these factors is not too serious for the treatment of a
"pure" single isotope type gas, but for a mixture of isotopes, leads to

incorrect results.

Now to consider the part of the interaction given by the second and third
terms in Eq. (E6). Substituting into the polarization expression given by
Eq. (El)and using the substitutions given by Eqs. (E10, Ell) and writing .-

z..= % Kut" ', one finds

¢

cp (3) b= . ©
P (11) 2i|u|"N exp -i(w,t4p.)
( " 1 1 Ij] dxdydz exp - 2n(x +y)'
o '

?,;(3)(11) i h3ﬁ(xu)3

-
[exp (-2n;2) + exp (-2n,.2)] [_EIQE2 (U - V) ~ exp(-iy +2i (€, -¥) x

+2i (§2 - §1 - 2w) z] exp2i (§2 - W) y + exp -21(§14W) y]‘

(E3b)

E1E22 exp [21(§1 +w ) x -2i (§2 - §1 -2w)z] [exp 2i (§1 + W)Ay +

exp -.2i (§2 -w yJ.]+ c.c.
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If one carries out the dw integration first it can be seen that all the terms
give a factor of exp - (x +y + z)2. Thus in the "doppler limit" all the
terms in Eq (E3Y4) are of the order of 1 < - 1, or smaller. Equation (E3k4)
was not evaluated. Thus to be consistant, all the terms on the order of )
in the third order polarization, should be neglected. It should also always

be remembered that the resulting equations only hold for n<c<l.
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APPENDIX F

Calculation of Backscatter Correction to Rolarization

In writing the interaction in the presence of backscatter, it is now assumed
that the steady state radiation field is composed of two sets of oppositely
directed traveling waves. The second set is generated from backscattering
of the first set, as shown in Fig Al. The expression for the first order

polarization is that given by Eq. (Cl), except that the interaction field

now reads

E, cos [(u)1 + Kv)t' + @1] + E, cos [(w2 - Kv)t! +-¢2]

{1
i ]
r,E, cos [(w1 - Kv)t! +'¢i] + rE, cos [(w2 + Kv)t! +-w2] !U +

. (F1)
l E, sin [(w1 + Kv)t! +-¢1] - E, sin[(w2 - kv)t! *‘@2] +

1
-r,E, sin [(w1 - Kv)t' +-@1] + 1B, Sin[(w2 + Kv)t +‘¢1JJ v

Making the rotating wave approximation, neglecting rapidly varying spacial

terms and integrating over the cavity length, the first order Fourier component

of the polarization becomes

. 2 - 0 0
P (1) = :il&l__E J dvW (v) [ dr’ [E1 exp - i(wlt + @1) o
o

n oh Jo
exp (-71_7') + 1, exp ('7147' -iel) + E, exp -i(w. t +-¢2)
(F2)
exp( -72p” )¢+ r, exp (-72+7' b iez) ] +c.c.

?;(1) =i Pn(l) [rl’ o E, = T 'E2] (¥3)

The notation is identical to that in Appendix C.

Using a Maxwellian velocity distribution and integrating over velocity, Eqs.
(F2,F3) become




-

_‘FE_

e (D

) ® 2 .
a = -iA exp -(wlt +<.p1) J; dx exp (-x - 2nx{[ 1 +r, exp(-lel)]

(FL)
E, exp(2i§1 x)+ (1% r, exp()'-iee)] E, exp (-iy + 21 §2x) ]]+ c.c.

~ (1 . 1
P (1) _ i Pn( ) [rl, ty By =ery, or, -E2] (F5)

=}

The integrals in Eqs (F4, F5) can be expressed in terms of the Hilbert

transform of the Gaussian integral to give

Pn( 1 . F exp -i(wlt + cpl) + C.C. (F6)

?g(l) =T exp -i(wlt + cpl) + C.C. (F7)

A . . .
F= -3 [E1 (1 + r; exp - 1e1) Z (§1) +E, (1 + r, exp -192) exp (-iy)

(F8)
2(5,)]
F = iF [rl, ) E2 = -Tys -To, -E2] . (F9)
Writing
F = #[A + B exp -i}] , (F10)
F = %% + 73 exp(-i¥)] , (F11)
it can be seen from Eqs. (F8, F9) that
A = iA (-ry) (F12)
B = -iB (-r2) . (F13)

Hence Eq. (E24) is not satisfied and the factars in the self-consistant

equations will not take the simple form as given in Eq (E24a). By substitution,

it is found that

s-C = [A,(r) +a, (-r))] +[B(ry) - By(-r,)] cos ¥ +
(Fik)

[Br(re)- Br('r2)] Sin‘V




P

T

e

C+3S = [Ab (rl) + Ar(?ri)] + [Br (re) - B, (-rz)] cos § +

(F15)
[B; (ry) - By (-r,)] sin §
Using Eqs (F8, F10, F12, F13), it is found that
A, =-AE, [(1 + r, cos el) Z, (gl) -1, sine, Z_ (gl)] (F16)
A =-AE [(1 + r, cos el) Z (gl) +r, sin 51 A (§1)] (F17)
B, =-AE, [(1+r, cos ;) 2, (§,) - r, sin e, Z (§2)] (F18)
B_=-AE, [(r+ r, cos e2) z. (§2) + 1, sin €, Z, (§é)] (F19)

Using Eqs (F1L4-F19) and Eqs (A28-A31) the first order self-consistant equations

become

E1 +'%51 E, = wA [E1 Z, (gl) +r, By Z, (§2) cos (y + 32) -

B 2e
(F20)
z. (§,) sin (4 +¢,) ]
(0, +§, -0) E = %% (B, 2. (§)) +r, By Z, (§)) cos (¥ +e¢,) +
o (F21)

z, (§8;) sin (¥ +¢)) ]

Equations for beam "two" are obtained by letting 1 -+ 2,2 - 1 and ¥ - -y.
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APPENDIX G

Analysis of Rotation Drift Data

From Eq. (54), the instantaneous frequency difference between the oppositely

directed beams is of the form
My = XK + M5 + M8 cos '(\Lt‘-B) (c1)
The average observed frequency difference is, from Eq. (56)
_ 2 2,1/2
Ay = [(AQR +mB) - My ] (c2)

Assuming the quantities on the right hand side of Eq. (G2) to be time independent,
a time integration of Eq. (56) gives

N =T [( + )% - s )Y/  (63)

where N is the number of cycles in a time T for a frequency Aw.

If the laser is rotated first in one direction and then in the other direction
with the same I/_‘QR|, then Eq. (G3) can be written for both cases as
N,
N

)2 - AQL2]1/2 (ck)

2.1/2
L]/ (65)

T [(mR + Ky

2
T [(AQR - AQB) - X
For the case of the rotation rate being much greater than the bias rate and the
lock-in threshold, a binomial expansion of Eqs. (G4, G5) gives,

N, -N =2THM, (c6)

Thus the difference in counts when the laser is rotated in opposite directions
is just equal to the bias counts. For the case of the eXperiment discussed in

section 26, earth's rate is included in the bias term.




